[译]sklearn.feature_extraction.text.TfidfVectorizer

  • class TfidfVectorizer

    官方文档

    class sklearn.feature_extraction.text.TfidfVectorizer(input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer=’word’, stop_words=None, token_pattern=’(?u)\b\w\w+\b’, ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=<class ‘numpy.float64’>, norm=’l2’, use_idf=True, smooth_idf=True, sublinear_tf=False)

    将原始文档转化成TF-IDF特征表示的矩阵。

    等价于CountVectorizer之后再进行 TfidfTransformer

    更多内容参见:Text feature extraction

  • Parameters

Parameters数据类型意义
inputstring {‘filename’, ‘file’, ‘content’}待处理对象
encodingstring, ‘utf-8’ by default.解码方式
decode_error{‘strict’, ‘ignore’, ‘replace’}如果处理字节文件,而文件中包含给定encoding解码失败的字符,指示程序如何处理,默认strict,返回一个UnicodeDecodeError
strip_accents{‘ascii’, ‘unicode’, None}预处理(preprocessing)阶段取出语料中的重音符号。 ‘ascii’:速度快,只严格匹配ASCII; ’unicode‘:稍慢,匹配所有字符 None:default不做任何处理
lowercaseboolean标记之前,把所有字符转成小写
preprocessorcallable or None (default)覆盖预处理阶段,但是保留标记(tokenizing)和n-grams生成步骤
tokenizercallable or None (default)覆盖tokenization,保留预处理和n-grams生成步骤。只有在analyzer == 'word'时使用
stop_wordsstring {‘english’}, list, or None (default)‘english’:使用内置的英语停止词 list:自定义停止词 None:没有停止词
token_patternstring构成token的正则表达式,只在analyzer == 'word'时使用,默认规则选择2个或以上字母或数字字符,忽略标点,且标点作为token分隔器
ngram_rangetuple (min_n, max_n)n-grams提取中n值的上下界,界内所有n值(min_n <= n <= max_n)都会被用到
analyzerstring, {‘word’, ‘char’, ‘char_wb’} or callableWhether the feature should be made of word or character n-grams. Option ‘char_wb’ creates character n-grams only from text inside word boundaries; n-grams at the edges of words are padded with space. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input.
max_dffloat in range [0.0, 1.0] or int, default=1.0创建词汇表时,忽略超过给定阈值的项目。 float:出现次数与语料库总数比例 int:绝对计数 如果给定vocabulary参数,则此参数忽略
min_dfspecific同上,下界
max_featuresint or None, default=Nonevocabulary如果是Not None:忽略此参数 ;如果不是None:整个语料库(corpus)按频率排列,取max_features个特征
vocabularyMapping or iterable, optionalr如果没给定参数:vocabulary由输入文档决定 Mapping:在特征矩阵中,键是terms,值是indices iterable:
binaryboolean,False(Defalt)True:所有非零计数设置为1,用于二元事件的离散概率模型
dtypetype,optionalfit_transform() or transform()返回的矩阵类型
norm‘l1’, ‘l2’ or None, optional (default=’l2’)正则化
use_idfboolean (default=True)启用inverse-document-frequency重赋权重
smooth_idfboolean (default=True)平滑idf
sublinear_tfboolean (default=False)1 + log(tf)替换tf,实现亚线性
  • Attributes

Parameter数据类型意义
vocabulary_dictA mapping of terms to feature indices.
idf_array, shape (n_features)idf向量
stop_words_set停止词
  • 方法Methods

    1. build_analyzer(self)

      返回一个callable,用于预处理和标注

    2. build_preprocessor(self)

      返回一个函数,用在标注之前对text预处理

    3. build_tokenizer(self)

      返回一个函数,将字符串切分成tokens序列

    4. decode(self, doc)

      将输入解码成unicode符。

      doc,需要decode的字符串

    5. fit(self, raw_documents[, y])

      从原始文件中学出一个字典结构的全部tokens的词汇表

    6. fit_transform(self, raw_documents[, y])

      学出字典结构词汇表,返回一个term-document矩阵。

      等价于transform之后fit,不过更高效

    7. get_feature_names(self)

      一个从特征证书指标映射到特征名字的数组

    8. get_params(self[, deep])

      得到评估量的参数

    9. get_stop_words(self)

      创建或获取有效的停止词列表

    10. inverse_transform(self, X)

      返回X中每个有非零词目的文件。(X_inv : list of arrays, len = n_samples

      X : {array, sparse matrix}, shape = [n_samples, n_features]

    11. set_params(self, **params)

      设置这个评估器的参数

    12. transform(self, raw_documents)

      将文件转换成document-term矩阵。

      用经由fit拟合的词汇表或给定的构造函数,从原始text文件中提取token数量。

      raw_documents : iterable str, unicode or file objects都可以

      X : sparse matrix, [n_samples, n_features] Document-term matrix。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值