2020_12-大学物理框架(下册)针对考试版-热学,振荡和波动,光学,量子物理

这篇博客概述了大学物理的热学、振动和波动、量子物理三大主题。热学部分介绍了理想气体状态方程、热力学第一定律以及卡诺循环。振动和波动涉及傅里叶变换、波的干涉与衍射。量子物理部分从波粒二象性出发,探讨了波尔模型和量子力学的基本概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大学物理框架

首先这份物理框架将只包含热学,振荡和波动,光学,量子物理(前面的我未来有时间再说吧) 这三项几乎是完全独立中间没有什么关联(至少在大物需要理解的范围内),那么分开叙述

热学

首先通过实验得到理想气体状态方程;根据对理想气体的假设“大小不计,相互作用只有碰撞,不计重力等”可以推出 p x = n m f v x 2 p_x=nm_f v_x^2 px=nmfvx2 ,加上理想气体状态方程和能均分定理可以得到 ϵ t = 3 k T 2 \epsilon _t = \frac{3kT}{2} ϵt=23kT ,同时也可以推出气体分子的速度和能量分布,即麦克斯韦速率分布,进而得到下列要背的公式:

v p = 2 k T / m f 均 方 根 = 3 k T / m f 均 值 = 8 k T / π m f v_p=\sqrt{2kT/m_f}\\均方根=\sqrt{3kT/m_f}\\均值=\sqrt{8kT/\pi m_f} vp=2kT/mf =3kT/mf =8kT/πmf

当气体不再理想的时候,首先受到重力作用for example,在动能处加上势能即可。当自身体积和气体之间相互作用需要考虑的时候,则产生了范德瓦尔斯方程,也产生了平均自由程的概念,从而在偏离平衡态时进行一些计算。

上述主要都是在微观情况下讨论的,是根据一个气体的运动状况进行一个统计假设即可。接下来的热力学基础便是在宏观状态下的一种新的讨论,它把微观的东西用宏观参量表示出来,比如所谓的温度就是代表着微观下的分子平均动能等。

热力学第一定律便是指能量守恒,引入热容量的概念方便对热一求导处理,于是考试时根据热一律对平衡状态的理想气体进行一些过程分析运用。在平常的过程之外还有绝热自由膨胀,主要作用是让我们体会状态方程不再适用的状况和热二。而当理想气体在一个循环过程中时,特殊点的便成了可为人所利用的卡诺循环。卡诺循环是理论上最高效率的循环,其中效率定义为A/Q1,卡诺循环中为T1-T2/T1而逆卡诺循环就是制冷过程,效率为Q2/A=T2/T1-T2。由卡诺循环中不变的量引入了熵,dS≥dQ/T,熵是状态量,在可逆循环中等号成立,也就是说如果要计算熵变的化要在任意可逆循环中计算(注意一般恒满足状态方程的都是可逆循环),而S=klnΩ也可以用来表示熵了。

振动和波动

在振动中我认为最重要的其实是傅里叶变换,它告诉了我们任何波函数都可以看成是正弦的叠加,所以才能有以下这些式子。首先对于一个正弦函数,它的振动叠加怎么做,在一些非正弦的地方怎么算(本质上解微分方程-》转换成向量法-》得到结果)。振动本质上就是这些东西。而波中首先介绍了波的概念,作为连续质点的这样一种运动状态的传播(指机械波),介绍了具体的波如声波,地震波,(值得注意的是声波的压强最大处是传播时相位为kpi的点),学习了波的干涉和衍射,其实所谓干涉就是离散波源,衍射就是连续波源即可。至于多普勒效应只要掌握好,相互靠近则频率增加,其中接收者改变波周期,传播者改变波波长即可。

光学

几何光学不管,只需知道折射定律和反射定律即可。

波动光学中,首先了解到光的波动性(这也是目前唯一需要考察的点),首先先明白光波的叠加这回事,又到了学习傅里叶的时候(笑),然后考虑两种干涉,分波阵面干涉和分振幅干涉,本质上来说他们是一样的,作为离散的条件来说,如果他们有2kpi的相位差,或者是kλ的光程差,就能相干相长,考虑相位图即可理解。而光的衍射本质上是连续光的衍射效果,而且它相当于是给普通的干涉画了个包络线?而且是确定光强(振幅)的包络线。那么其实衍射就很好理解了。双缝乃至多缝衍射就理解成干涉+衍射包络线即可!那么这么理解的话会更有逻辑一些呢!有道理!然后多缝(光栅)的时候就理解成干涉叠加,用相量图的方式就好了!然后是偏振,光的偏振是线偏光嘛,首先光是横波,然后光的EH方向会不一样,这样子就可以选择合适的偏振片进行操作了。旋光效应是可以产生相位差吧,比如1/4波长就产生pi/2相位差

量子物理

前期顺序:发现电子-》求核质比(大)-》枣糕模型-》电子散射-》卢瑟福核式结构模型-》有稳定性等不合理处-》黑体辐射(M=σT4 Tλ_max_ =b )+光电效应( h ν = ϵ − W o h\nu=\epsilon -W_o hν=ϵWo )+谱线经验公式( 1 / λ = R ( 1 / n 1 2 − 1 / n 2 2 ) 1/\lambda = R (1/n_1^2-1/n_2^2) 1/λ=R(1/n121/n22) -》量子化-》波尔模型(能级,量子化角动量,定态假设)-》弗兰克赫兹实验(证明波尔模型在汞原子成立)-》量子力学

量子力学从波粒二象性起始,首先是德布罗意波和光的统一, E = m c 2 = h ν ; P = h / λ E=mc^2=h\nu ; P=h/\lambda E=mc2=hν;P=h/λ ,然后书写了微观粒子的状态描述–波函数(复频域),通过这样类似正余弦的形式“推出”了自由粒子的薛定谔方程,然后我们惊喜的发现薛定谔方程与p E 无关,也就是说任何pE都可以满足薛定谔方程,又由于线性性所有的Φ都可以满足薛定谔方程.推出这个词是打了引号的,事实上我们把它认为了是一个公理[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-50RaqB90-1609422133743)(https://www.zhihu.com/equation?tex=%5Cfrac%7B%5Cpartial%5E%7B2%7D%7D%7B%5Cpartial+t%5E%7B2%7D%7D%5Cpsi-%5Cnabla%5E%7B2%7D%5Cpsi%2Bm%5E%7B2%7D%5Cpsi%3D0)]

诺,见上.

这便是薛定谔方程.把一些特殊的V带入上式即可得到一些特殊的Φ.如带入一维无限深势阱,则可以自然的通过边界得到它的量子性 ,也就是说n是自然的通过sinθ=0,得到θ=nkpi中这种形式中得到的量子性,所以书上也说是驻波性, 不过可以想见的是对于每一个n ,都会有独特的p,也就会有独特的E,所以是不同的定态叠加.(那么从这种情况下就可以想到线性叠加的成立!可它到底是什么样子的呢?我始终想不到) 带入V=α/r2 则可以得到用量子力学处理氢原子问题的结果,有n,l, m l m_l ml ,m_s, n对应的就是能层,顾名思义能层,能层就是能量的量子化,l对应的是电子轨道角动量大小的量子化,ml指的是电子轨道角动量空间取向的量子化,ms指的是自旋角动量取向,从而得到电子壳层结构

半导体与激光

1.导体、绝缘体、半导体(N,P)的能带结构
2.原子能级跃迁方式
3.产生激光的必要条件
4.光学谐振腔的作用

原子核物理

1.了解原子核的基本性质;
2.了解放射性衰变的基本规律并能进行简单计算。

即可 无特殊点 不顾了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值