电磁场总结

电磁场总结

理论脉络构建

整个电磁场,可以说是以赫姆霍兹定理为基础绕着麦克斯韦方程组进行的理论体系

麦克斯韦方程

所谓静场,就是所有对t偏分的项为0,这样电场和磁场便能完全解耦开来,方便计算。电磁场先考虑了静电场,恒定电场,恒定磁场三种情况,以这种完全解耦的形式去计算相关的量,静态场的边值问题则是从系统性的角度去观察上述三种情况并给出一种特殊的解决方法。时变电磁场基本方程展示了方程(包括坡印亭)和其基本解法(动态位,复数)以及相关的一些结论,奠定时变电磁场求解的基础和理论方法,低频电磁场——准静态场告诉我们频率的影响情况,通过幂级数显示了准静态近似的影响程度(杂散分布电感电容)并通过集肤效应将之理论化易于计算,高频电磁场则是进行直接求解麦克斯韦方程组的方式进行应用,如定向传播的电磁波,TEM波正入射,辐射等等。

相似的对应关系

场和路的对应关系

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XEMXpQlT-1624636129433)(电磁场总结.assets/image-20210625224722070.png)]

静电场和恒定电场的对应关系

J-D

γ-ε

E-E

静电场和恒定磁场对应关系

A-φ

1/μ-ε

等等

(故画等A线和画等φ线近似)

(故I在介质的等效电流看上去跟q的正好相反)

⚠警告:以下内容对考试没有任何帮助,看了可能会把已有的知识弄糊涂,谨慎查看

电磁场——波的本质和相关思考

一切的数学前提:
∇ × ∇ × A ⃗ = ∇ ( ∇ ⋅ A ⃗ ) − ∇ 2 A ⃗ \nabla \times \nabla \times \vec A=\nabla(\nabla·\vec A)-\nabla^2\vec A ××A =(A )2A

对麦克斯韦方程组进行互带化简,可以得到波动方程:
∇ 2 E ⃗ + w 2 ϵ μ E ⃗ = 0 ∇ 2 H ⃗ + w 2 ϵ μ H ⃗ = 0 \nabla^2\vec E+w^2\epsilon \mu \vec E=0\\ \nabla^2\vec H+w^2\epsilon \mu \vec H=0\\ 2E +w2ϵμE =02H +w2ϵμH =0
为了简便起见,来自eva的定义使 k 2 = ( j w ϵ μ ) 2 k^2=(jw\sqrt{\epsilon\mu})^2 k2=(jwϵμ )2,方程化简为
∇ 2 E ⃗ = k 2 E ⃗ ∇ 2 H ⃗ = k 2 H ⃗ \nabla^2\vec E=k^2 \vec E\\ \nabla^2\vec H=k^2\vec H\\ 2E =k2E 2H =k2H
由于形状约束为矩形波导或平板形波导或双电轴形波导或一切相对而言直角坐标系有独立于x,y,z约束的边界条件(此句话有点绕,但很重要,请注意) E ⃗ = E ⃗ 0 X ⃗ ( x ) Y ⃗ ( y ) Z ⃗ ( z ) \vec E=\vec E_0 \vec X(x)\vec Y(y) \vec Z(z) E =E 0X (x)Y (y)Z (z)

换句话说,如果边界约束是圆柱形等则可以用圆柱形式的分解,结果会跟贝塞尔函数有关,如果边界约束是球按球分解,结果会很漂亮的,因为数理方程中三维球一个点的值取决于r=vt球面初始平均值加其初始导数造成的影响(说远了,让我们回来)

总而言之,在这里我们以矩形波导的边界举例,写出
E ⃗ = E ⃗ 0 X ⃗ ( x ) Y ⃗ ( y ) Z ⃗ ( z ) \vec E=\vec E_0 \vec X(x)\vec Y(y) \vec Z(z) E =E 0X (x)Y (y)Z (z)
注意,这里的形式长这样
E ⃗ 0 为 复 数 矢 量 X ⃗ ( x ) = e k 11 x e ⃗ x + e k 12 x e ⃗ y + e k 13 x e ⃗ z Y ⃗ ( y ) = e k 21 y e ⃗ x + e k 22 y e ⃗ y + e k 23 y e ⃗ z Z ⃗ ( z ) = e k 31 z e ⃗ x + e k 32 z e ⃗ y + e k 33 z e ⃗ z \vec E_0 为复数矢量\\ \vec X(x)= e^{k_{11} x}\vec e_x+e^{k_{12} x}\vec e_y+e^{k_{13} x}\vec e_z\\ \vec Y(y)= e^{k_{21} y}\vec e_x+e^{k_{22} y}\vec e_y+e^{k_{23} y}\vec e_z\\ \vec Z(z)= e^{k_{31} z}\vec e_x+e^{k_{32} z}\vec e_y+e^{k_{33} z}\vec e_z\\ E 0X (x)=ek11xe x+ek12xe y+ek13xe zY (y)=ek21ye x+ek22ye y+ek23ye zZ (z)=ek31ze x+ek32ze y+ek33ze z
带入公式(3),可以得到
k 11 2 + k 21 2 + k 31 2 = k 2 k 12 2 + k 22 2 + k 32 2 = k 2 k 13 2 + k 23 2 + k 33 2 = k 2 k_{11}^2+k_{21}^2+k_{31}^2=k^2\\ k_{12}^2+k_{22}^2+k_{32}^2=k^2\\ k_{13}^2+k_{23}^2+k_{33}^2=k^2\\ k112+k212+k312=k2k122+k222+k322=k2k132+k232+k332=k2
根据相应的边界条件(我懒得写它边界条件公式,反正懂得都懂),如矩形波导
k 12 = k 1 π a k 21 = k 2 π b k 13 = k 3 π a k 23 = k 4 π b k_{12}=\frac{k_1\pi}{a}\\ k_{21}=\frac{k_2\pi}{b}\\ k_{13}=\frac{k_3\pi}{a}\\ k_{23}=\frac{k_4\pi}{b} k12=ak1πk21=bk2πk13=ak3πk23=bk4π
以上这些条件来自于波导形状的约束

( j K c ) 2 = k 13 2 + k 23 2 (jK_c)^2=k_{13}^2+k_{23}^2 (jKc)2=k132+k232

所以更本质的

( j K c ) 2 + k 33 2 = ( j w ϵ μ ) 2 (jKc)^2+k_{33}^2=(jw\sqrt{\epsilon\mu})^2 (jKc)2+k332=(jwϵμ )2

是这个式子

其中 k 33 = Γ k_{33}=\Gamma k33=Γ 看方程形式也很好看出来

类比以上的推导,我们可以运用的更为广泛些,比如我上面所列举的矩形波导或平板形波导或双电轴形波导或一切相对而言直角坐标系有独立于x,y,z约束的边界条件或圆柱形或是球。都可以按照我这种方法来写。

写完后发现,我们对于所谓的波形因子*传播因子有了更本质的了解,它们是一致的,甚至可以说,这就是时空统一的根本之一。(来自eva不严谨的断言)

非常高兴,我证了一个十分伟大的东西。那么我们来看看这个伟大的东西在渺小的电磁场考试中可以怎么用(笑死)

由于电磁场考试基本上只考矩形波导和平板波导,所以没什么用(笑死)

但是渗透深度是可以借这个算出来的,它是Γ的实部的倒数(好吧还是没什么用,毕竟考试记公式多快啊)

总而言之,对考试没用。

  • 7
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值