【HDU 1520】 Anniversary Party

【题目链接】

          点击打开链接

【算法】

         树形DP

         令f[i][0]表示 : 以i为根的子树中,若i不参加宴会,所能获得的最大愉悦值

            f[i][1]表示 : 以i为根的子树中,若i参加宴会,所能获得的最大愉悦值

         那么,如果i不参加宴会,它的下属就可以参加宴会,也可以不参加宴会,因此 :

         f[i][0] = sigma( max(f[j][0],f[j][1]) ) (j为i的子节点)

         如果i参加宴会,它的下属必然不能参加宴会,因此 :

         f[i][1] = Ri + sigma( f[j][0] ) (j为i的子节点)

         最后,答案为max(f[root][0],f[root][1])(root为根节点)

  【代码】

            

#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#include <stack>
#include <limits.h>
using namespace std;
#define MAXN 6010
 
int i,n,u,v,root;
vector<int> e[MAXN];
int val[MAXN],fa[MAXN],f[MAXN][2];

inline void dfs(int x)
{
		int i,y;
		f[x][1] = val[x];
		for (i = 0; i < e[x].size(); i++)
		{
				y = e[x][i];
				dfs(y);
				f[x][0] += max(f[y][0],f[y][1]);
				f[x][1] += f[y][0];
		}
}

int main() 
{
		
		while (scanf("%d",&n) != EOF)
		{
				for (i = 1; i <= n; i++) 
				{
						e[i].clear();
						f[i][0] = f[i][1] = 0;
				}
				for (i = 1; i <= n; i++) scanf("%d",&val[i]);
				for (i = 1; i < n; i++)
				{
						scanf("%d%d",&u,&v);
						e[v].push_back(u);
						fa[u] = v;	
				}	
				scanf("%d%d",&u,&v);
				for (i = 1; i <= n; i++)
				{
						if (!fa[i])
								root = i;
				}
				dfs(root);
				printf("%d\n",max(f[root][0],f[root][1]));
		}
		
		return 0;
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值