【题目链接】
【算法】
树形DP
令f[i][0]表示 : 以i为根的子树中,若i不参加宴会,所能获得的最大愉悦值
f[i][1]表示 : 以i为根的子树中,若i参加宴会,所能获得的最大愉悦值
那么,如果i不参加宴会,它的下属就可以参加宴会,也可以不参加宴会,因此 :
f[i][0] = sigma( max(f[j][0],f[j][1]) ) (j为i的子节点)
如果i参加宴会,它的下属必然不能参加宴会,因此 :
f[i][1] = Ri + sigma( f[j][0] ) (j为i的子节点)
最后,答案为max(f[root][0],f[root][1])(root为根节点)
【代码】
#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#include <stack>
#include <limits.h>
using namespace std;
#define MAXN 6010
int i,n,u,v,root;
vector<int> e[MAXN];
int val[MAXN],fa[MAXN],f[MAXN][2];
inline void dfs(int x)
{
int i,y;
f[x][1] = val[x];
for (i = 0; i < e[x].size(); i++)
{
y = e[x][i];
dfs(y);
f[x][0] += max(f[y][0],f[y][1]);
f[x][1] += f[y][0];
}
}
int main()
{
while (scanf("%d",&n) != EOF)
{
for (i = 1; i <= n; i++)
{
e[i].clear();
f[i][0] = f[i][1] = 0;
}
for (i = 1; i <= n; i++) scanf("%d",&val[i]);
for (i = 1; i < n; i++)
{
scanf("%d%d",&u,&v);
e[v].push_back(u);
fa[u] = v;
}
scanf("%d%d",&u,&v);
for (i = 1; i <= n; i++)
{
if (!fa[i])
root = i;
}
dfs(root);
printf("%d\n",max(f[root][0],f[root][1]));
}
return 0;
}