
版权声明:本文为博主原创文章,想转载告诉QQ851627835一下就好。 https://blog.csdn.net/everlasting_20141622/article/details/78712526
→题目链接←
【想说的话】
谁能告诉我笛卡尔树有什么妙的用处啊....
【题解】
裸笛卡尔树
笛卡尔树的定义题中已经说的挺完整的了
建树时,先把所有的点以key从小到大排序,然后从前往后插入到树中
具体实现方法为:从根节点开始扫,当找到一个点满足val[x]大于val[now]并且val[x的右儿子]小于val[now](假设我们维护的是大根堆)时,就把【now】的父亲设为【x】,【x】的右儿子设为【now】,【原x的右儿子】的父亲设为【now】,【now】的左儿子设为【原x的右儿子】,这样搞完之后的树依然满足笛卡尔树的性质
但是如果每次都从根节点开始扫的话,显然时间复杂度会被卡成O(n^2),这时候这时候我们发现为了满足笛卡尔树的性质,这个点插入到树中之后一定是在右链的最末端,并且之前下面的点都不会再访问了,因为每次我们只需要扫右链上的点就好了。
这样的话我们就可以用栈来维护现在右链的状态,从最下面往上扫,可以非常简单的想出,复杂度就变成了O(n)的了
【代码】
#include<iostream> #include<cstdio> #include<string> #include<cstring> #include<algorithm> #define MAXN 50050 using namespace std; inline int rd(){ int x=0,y=1;char c=getchar(); while(c<'0' || c>'9'){if(c=='-')y=-y;c=getchar();} while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar(); return x*y; } struct node{ int key,val,num; int l,r,fa; friend bool operator < (node a,node b){ return a.key<b.key; } }; int n; node a[MAXN]; int ans[MAXN]; int stk[MAXN],tp=0; void build(){ for(int i=1; i<=n; i++){ while(tp && a[stk[tp]].val>=a[i].val)tp--; int f=stk[tp]; int son=a[f].r; a[f].r=i; a[i].fa=f; a[son].fa=i; a[i].l=son; stk[++tp]=i; } } int main(){ n=rd(); for(int i=1; i<=n; i++)a[i].key=rd(),a[i].val=rd(),a[i].num=i; sort(a+1,a+n+1); for(int i=1; i<=n; i++)ans[a[i].num]=i; build(); puts("YES"); for(int i=1; i<=n; i++)printf("%d %d %d\n",a[a[ans[i]].fa].num,a[a[ans[i]].l].num,a[a[ans[i]].r].num); return 0; }