信息学奥赛一本通 1257:Knight Moves(evd)

这篇博客探讨了信息学竞赛中的问题‘Knight Moves’,即在n×n的棋盘上,计算骑士从起始位置到目标位置的最少移动步数。通过广度优先搜索(BFS)策略解决,对于不同大小的棋盘和位置,给出了相应的步数解答。当起始位置与目标位置相同,步数为0。文章包含输入输出样例及AC代码。
摘要由CSDN通过智能技术生成

【题目描述】
输入n代表有个n×n的棋盘,输入开始位置的坐标和结束位置的坐标,问一个骑士朝棋盘的八个方向走马字步,从开始坐标到结束坐标可以经过多少步。
在这里插入图片描述
【输入】
首先输入一个n,表示测试样例的个数。

每个测试样例有三行。

第一行是棋盘的大小L(4≤L≤300);

第二行和第三行分别表示马的起始位置和目标位置(0…L−1)。

【输出】
马移动的最小步数,起始位置和目标位置相同时输出0。

【输入样例】
3
8
0 0
7 0
100
0 0
30 50
10
1 1
1 1
【输出样例】
5
28
0
【心得】决策数目变了而已!
【AC代码】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std; 
const int N=305;
int n,q[N*N][2],vis[N][N],dir[8][2]={
   {
   -2,1},{
   -2,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值