本文是学习算法的笔记,《数据结构与算法之美》,极客时间的课程
散列表和链表,经常会被放在一起使用,在链表那一节,我们讲到,LRU淘汰算法的时间复杂度是O(n),当时我也提到,通过散列表可以将这个时间复杂度降低到O(1)。
跳表那一节,我提到Redis的有序集合是使用跳表来实现了,跳表可以卸任一种改进版的链表。Redis的有序集合不仅使用了跳表,还用到了散列表。
除此之外,Java中LinkedHashmap也用到了散列表和链表两种结构。
今天,我们来看看,在这几个问题中,散列表和链表都是如何组合起来使用的,以及为什么散列表和链表经常会放到一块使用。
LRU缓存淘汰算法
首先,回顾下当时我们是如何通过链表实现LRU缓存淘汰算法的。我们需要维护一个按照访问时间从大到小有序排列的链表结构。因为缓存大小有限,当缓存空间不够,需要淘汰一个数据的时候,我们就直接将链表头部结点删除。
当要缓存某个数据的时候,先在链表中查找这个数据。如果没有找到,则直接将数据放到链表的尾部;如果找到了,就把它移动到链表的尾部。因为查找数据需要遍历链表,所以单纯用链表实现LRU缓存淘汰自满的时间复杂度很高,是O(n)。
实际上,一个缓存(cache)系统主要包含下面这几个操作:
往缓存中添加一个数据;从缓存中删除一个数据;在缓存中查找一个数据。
这三个操作都涉及“查找”操作,如果单纯地采用链表的话,时间复杂度只能是O(n)。如果我们将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到O(1)。具体的结构就是下面这个样子:
我们使用双向链表存储的数据,链表中的每个结点处理存储数据(data)、前驱指针(prev)、后继指针(next)之外,还增加了一个特殊的字段hnext。这个hnext有什么用呢?
因为我们的散列表是通过链表法解决散