“””
假设你正在爬楼梯。需要 n 步你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 步 + 1 步
2. 2 步
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 步 + 1 步 + 1 步
2. 1 步 + 2 步
3. 2 步 + 1 步
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
“”“
class Solution(object):
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n < 2:
return n
dp = [0 for _ in range(0, n)]
dp[0] = 1
dp[1] = 2
for i in range(2, n):
dp[i] = dp[i-1] + dp[i-2]
return dp[n-1]
问题的本质是求斐波那契数列(Fibonacci Sequence)
递推式为:dp[x] = dp[x - 1] + dp[x - 2]