计算机视觉——python在一张图中画多条ROC线

在验证分类算法的好坏时,经常需要用到AUC曲线,而在做不同分类模型的对比实验时,需要将不同模型的AUC曲线绘制到一张图里。

1. 小型分类模型对比,可以直接调用的

用一样的数据集做示例,简单地直接分别得到每个分类模型预测的结果。

from sklearn.datasets import load_breast_cancer
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.model_selection import train_test_split
import pylab as plt
import warnings; warnings.filterwarnings('ignore')

dataset = load_breast_cancer()
data = dataset.data
target = dataset.target
X_train, X_test, y_train, y_test = train_test_split(data,target,test_size=0.2)
# 模型1调用sklearn中的RandomForestClassifier
rf1 = RandomForestClassifier(n_estimators=5)
rf1.fit(X_train, y_train)
pred1 = rf1.predict_proba(X_test)[:,1]
# 模型2调用sklearn中的ExtraTreesClassifier
rf2 = ExtraTreesClassifier(n_estimators=5)
rf2.fit(X_train, y_train)
pred2 = rf2.predict_proba(X_test)[:,1]

# 画图部分
fpr1, tpr1, threshold1 = metrics.roc_curve(y_test, pred1)       # <class 'numpy.ndarray'> <class 'numpy.ndarray'>
roc_auc1 = metrics.auc(fpr1, tpr1)

fpr2, tpr2, threshold2 = metrics.roc_curve(y_test, pred2)       # <class 'numpy.ndarray'> <class 'numpy.ndarray'>
roc_auc2 = metrics.auc(fpr2, tpr2)

plt.figure(figsize=(6,6))
plt.title('Validation ROC')
plt.plot(fpr1, tpr1, 'b', label = 'RandomForestClassifier AUC = %0.3f' % roc_auc1)
plt.plot(fpr2, tpr2, 'b', label = 'ExtraTreesClassifier AUC = %0.3f' % roc_auc2)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.savefig("filename.png")
plt.show()
plt.close()

在这里插入图片描述

2. 大型的CNN模型,无法直接得到结果。

2.1 先分别运行每个分类模型,将预测的结果存入csv文件中。

from sklearn.datasets import load_breast_cancer
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.model_selection import train_test_split
import pylab as plt
import warnings; warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression   #线性回归
import csv

dataset = load_breast_cancer()
data = dataset.data
target = dataset.target
X_train, X_test, y_train, y_test = train_test_split(data,target,test_size=0.2)
rf1 = RandomForestClassifier(n_estimators=5)
rf1.fit(X_train, y_train)
pred1 = rf1.predict_proba(X_test)[:,1]

dataframe = pd.DataFrame({'label':y_test,'pred':pred1})
dataframe.to_csv("test1.csv",index=False,sep=',')

rf2 = ExtraTreesClassifier(n_estimators=5)
rf2.fit(X_train, y_train)
pred2 = rf2.predict_proba(X_test)[:,1]

dataframe = pd.DataFrame({'label':y_test,'pred':pred2})
dataframe.to_csv("test2.csv",index=False,sep=',')


2.2 从csv文件读取每个模型的预测结果,绘制AUC曲线

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc

def Draw_ROC(file1,file2):
    '''这里注意读取csv的编码方式,
    如果csv里有中文,在windows系统上可以直接用encoding='ANSI',
    但是到了Mac或者Linux系统上会报错:`LookupError: unknown encoding: ansi`。
    解决方法:
    1. 可以改成encoding='gbk';
    2. 或者把csv文件里的列名改成英文,就不用选择encoding的方式了。
    '''
    data1=pd.read_csv(file1, encoding='ANSI')
    data1=pd.DataFrame(data1)
    data2=pd.read_csv(file2, encoding='ANSI')
    data2=pd.DataFrame(data2)
    print(list(data1['label']), list(data1['pred']))
    print(list(data2['label']), list(data2['pred']))

    fpr_CSNN,tpr_CSNN,thresholds=roc_curve(list(data1['label']),
                                           list(data1['pred']))
    roc_auc_CSSSNN=auc(fpr_CSNN,tpr_CSNN)

    fpr_NN,tpr_NN,thresholds=roc_curve(list(data2['label']),
                                       list(data2['pred']))
    roc_auc_DL=auc(fpr_NN,tpr_NN)

    font = {'family': 'Times New Roman',
            'size': 12,
            }
    '''这里很多电脑上也许默认是'DejaVu Sans'格式,但是在写论文时,
    往往需要'Times New Roman'格式,可以参考[这篇教程](https://blog.csdn.net/weixin_43543177/article/details/109723328)
    '''
    sns.set(font_scale=1.2)
    plt.rc('font',family='Times New Roman')

    plt.plot(fpr_NN,tpr_NN,'purple',label='NN_AUC = %0.2f'% roc_auc_DL)
    plt.plot(fpr_CSNN,tpr_CSNN,'blue',label='CSNN_AUC = %0.2f'% roc_auc_CSSSNN)
    plt.legend(loc='lower right',fontsize = 12)
    plt.plot([0,1],[0,1],'r--')
    plt.ylabel('True Positive Rate',fontsize = 14)
    plt.xlabel('Flase Positive Rate',fontsize = 14)
    plt.show()

if __name__=="__main__":
    Draw_ROC('./test1.csv',
             './test2.csv')

在这里插入图片描述

Python绘制多条ROC曲线的方法如下: 1. 导入所需的库:`import matplotlib.pyplot as plt` 2. 准备数据:获取多个分类器的真正率(True Positive Rate, TPR)和假正率(False Positive Rate, FPR)曲线数据,这些数据可以通过调用分类器的评估函数获得。 3. 创建图像和子图对象:`fig, ax = plt.subplots()` 4. 循环绘制线:使用`ax.plot()`函数,一次绘制每个分类器的ROC曲线,传入分类器的TPR和FPR数据作为参数。 5. 添加标题和标签:使用`ax.set()`函数,设置图像的标题、X轴和Y轴的标签。 6. 设置图例:如果需要,使用`ax.legend()`函数,设置图例以显示每个分类器的标识。 7. 显示图像:使用`plt.show()`函数,显示绘制好的ROC曲线图像。 下面是一个简单的示例代码,其中包含了绘制两条ROC曲线的基本步骤: ```python import matplotlib.pyplot as plt # 准备数据 classifier_1_tpr = [0.1, 0.2, 0.4, 0.6, 0.8] # 分类器1的TPR数据 classifier_1_fpr = [0.2, 0.3, 0.5, 0.7, 0.9] # 分类器1的FPR数据 classifier_2_tpr = [0.2, 0.3, 0.5, 0.7, 0.9] # 分类器2的TPR数据 classifier_2_fpr = [0.1, 0.2, 0.4, 0.6, 0.8] # 分类器2的FPR数据 # 创建图像和子图对象 fig, ax = plt.subplots() # 绘制线 ax.plot(classifier_1_fpr, classifier_1_tpr, label='Classifier 1') ax.plot(classifier_2_fpr, classifier_2_tpr, label='Classifier 2') # 添加标题和标签 ax.set(title='ROC Curve', xlabel='False Positive Rate', ylabel='True Positive Rate') # 设置图例 ax.legend() # 显示图像 plt.show() ``` 以上代码中,我们首先准备了两个分类器的TPR和FPR数据,然后使用`ax.plot()`函数绘制了两条ROC曲线,接着用`ax.set()`函数设置了标题和标签,最后使用`ax.legend()`函数设置了图例,最终使用`plt.show()`函数显示了绘制好的ROC曲线图像。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值