动态规划3:01背包理论基础|、01背包理论基础||、分割等和子集、最后一块石头的重量||、第三节总结

11. 0-1背包理论基础(一)

背包问题的分组如下:
在这里插入图片描述
至于背包九讲其他背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了。

0-1 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
在这里插入图片描述
这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。

这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是 o ( 2 n ) o(2^n) o(2n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

二维dp数组01背包

动态规划五步骤:

  1. 确定dp数组和下标的含义
    对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少?
    如下图:
    在这里插入图片描述
    时刻记住dp数组的含义!
  2. 确定递推公式
    再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
    那么可以有两个方向推出来dp[i][j]。
    不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
    放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
    所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
  3. 初始化
    首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:
    在这里插入图片描述
    在看其他情况。
    状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。
    dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
    那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
    当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
    所以,上述例子背包初始化如下:
    在这里插入图片描述
    dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。
在这里插入图片描述
如图:
4. 确定遍历方向
在如下图中,可以看出,有两个遍历的维度:物品与背包重量。
在这里插入图片描述
那么问题来了,先遍历物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解。

那么我先给出先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
    for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

例如这样:

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

为什么也是可以的呢?

要理解递归的本质和递推的方向。

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

在这里插入图片描述
再来看看先遍历背包,再遍历物品呢,如图:
在这里插入图片描述
大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了。
5. 举例验证递推公式
在这里插入图片描述
对应的结果就是dp[2][4]=35。
做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

卡码网例题46:
题目描述
小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。

第三行包含 M 个正整数,代表每种研究材料的价值。
输出一个整数,代表小明能够携带的研究材料的最大价值。

在这里插入图片描述

public class Bag{
    public static void main (String[] args) {
        int m=0,n=0;
        Scanner scan=new Scanner(System.in);
        System.out.println("input m and n:");
        m=scan.nextInt();
        n=scan.nextInt();
        int[] weight=new int[m];
        System.out.println("input weight:");
        for(int i=0;i<m;i++){
            weight[i]=scan.nextInt();
        }
        int[] values=new int[m];
        System.out.println("input weight:");
        for(int i=0;i<m;i++){
            values[i]=scan.nextInt();
        }
        System.out.println("该背包能装的最大价值是:"+BagMax(n,weight,values));
    }
     static int BagMax(int n,int[] weight,int[] values){
        //确定dp数组和下标含义
         int m=weight.length;
        int[][] dp=new int[m][n+1];
        //初始化
        for(int i=0;i<m;i++){
            dp[i][0]=0;
        }
        for(int j=0;j<=n;j++){
            if(j>=weight[0]){
                dp[0][j]=values[0];
            }
        }
        //遍历
        for(int i=1;i<m;i++){
            for(int j=0;j<=n;j++){
                if(j<weight[i])
                    dp[i][j]=dp[i-1][j];
                else
                    //要装第i个物品,但是可能装不下所以价值是在上一个物品层的dp[i-1][j]和在上一层去掉这个物品容量后装这个的价值dp[i-1][j-weight[i]]+valudes[i]的最大值
                    dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+values[i]);
            }
        }
        return dp[m-1][n];
    }
}

12. 01背包理论基础||

上一节讲解了二维dp数组,这一小节关注滚动数组,就是把二维数组降成一维。
还是用上一节的例子说明。
背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

一维dp数组(滚动数组)

对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。
这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

读到这里估计大家都忘了 dp[i][j]里的i和j表达的是什么了,i是物品,j是背包容量。

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

一定要时刻记住这里i和j的含义,要不然很容易看懵了。

动规五部曲分析如下:

  1. 确定dp数组的定义
    在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

  2. 一维dp数组的递推公式
    dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?
    dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])
    此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,
    所以递归公式为:dp[j]=Math.max(dp[j],dp[j-weight[i]]+values[i]);

  3. 一维dp数组如何初始化
    关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。
    dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。
    那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?
    看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。
    这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。
    那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

  4. 一维dp数组遍历顺序
    代码如下:

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

这里大家发现和二维dp的写法中,遍历背包的顺序是不一样的!
二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。
为什么呢?
倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!
举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

(这里如果读不懂,就再回想一下dp[j]的定义,或者就把两个for循环顺序颠倒一下试试!)

所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!,这一点大家一定要注意。

  1. 举例验证递推公式
    在这里插入图片描述
public class Bag {
    public static void main(String[] args) {
        int m = 0, n = 0;
        Scanner scan = new Scanner(System.in);
        System.out.println("input m and n:");
        m = scan.nextInt();
        n = scan.nextInt();
        int[] weight = new int[m];
        System.out.println("input weight:");
        for (int i = 0; i < m; i++) {
            weight[i] = scan.nextInt();
        }
        int[] values = new int[m];
        System.out.println("input weight:");
        for (int i = 0; i < m; i++) {
            values[i] = scan.nextInt();
        }
        System.out.println("该背包能装的最大价值是:" + BagMax(n, weight, values));
    }

    static int BagMax(int n, int[] weight, int[] values) {
        int m = weight.length;
        int[] dp = new int[n + 1];
        for (int i = 0; i < m; i++) {//遍历物品
            for (int j = n; j >= weight[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + values[i]);
            }
        }
        return dp[n];
    }
}

可以看出,一维dp 的01背包,要比二维简洁的多! 初始化 和 遍历顺序相对简单了。

所以我倾向于使用一维dp数组的写法,比较直观简洁,而且空间复杂度还降了一个数量级

在后面背包问题的讲解中,我都直接使用一维dp数组来进行推导。

二维数组和一维滚动数组总结

二维dp和一维dp有着很大的区别,空间复杂度降低一个数量级。
遍历的方向不一样:二维可以先物品再背包,也可以先背包再物品。
而一维只能先物品再背包,因为是对二维数组的压缩,是为了防止在dp[j]下只能添加一个物品。
背包的起始和终止条件不同:二维0<=j<=n,从0到n的正序遍历。
而一维是从j=n开始到j>=n-weight[i]的倒序遍历,是为了防止将物品重复放入。
递推公式随着数组的压缩发生变化。

13. 分割等和子集

例题416:
给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

在这里插入图片描述

01背包问题

背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。

要注意题目描述中商品是不是可以重复放入。

即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。

要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

本题重心:能否在数组中找到和为sum/2的子集。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2(重要)
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义
    01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。
    本题中每一个元素的数值既是重量,也是价值。
  2. 确定递推公式
    dp[j]=Math.max(dp[j],dp[j-weight[i]]+values[i]);
  3. 初始化
    dp=0;
  4. 确定遍历方向
    一维滚动数组只能先物品后背包,并且背包是倒序。
  5. 举例验证
    代码如下:
时间复杂度O(n^2),空间复杂度O(n)
class Solution {
    public boolean canPartition(int[] nums) {
        int sum=0;
        for(int i=0;i<nums.length;i++){
            sum+=nums[i];
        }
        if(sum%2!=0) return false;
        sum/=2;
        int[] dp=new int[sum+1];
        for(int i=0;i<nums.length;i++){
            for(int j=sum;j>=nums[i];j--){
                dp[j]=Math.max(dp[j],dp[j-nums[i]]+nums[i]);
            }
        }
        if(dp[sum]==sum)
        return true;
        else 
        return false;
    }
}

14. 最后一块石头的重量||

例题1049:
有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。

在这里插入图片描述
**重点:将一堆石头尽可能分成重量相等的两部分。**如果两堆石头大小不等,总有一个>=半值,一个<=半值,找到距离半值最接近的最大价值。两堆石头碰撞,剩下的石头最小,就转换为了01背包问题
动态规划五步骤:

  1. 确定dp数组及下标含义
    dp[j]表示容量为j的背包装石头的最大价值。
  2. 确定递推公式
    dp[j]=Math.max(dp[j],dp[j-weight[i]]+values[i]);
  3. 初始化
    dp=0;
  4. 确定遍历方向
    一维滚动数组只有一个方向
  5. 举例验证递推公式
    代码如下:
class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum=0;
        for(int i=0;i<stones.length;i++){
            sum+=stones[i];
        }
        int aver=sum/2;
        int[] dp=new int[aver+1];
        for(int i=0;i<stones.length;i++){
            for(int j=aver;j>=stones[i];j--){
                dp[j]=Math.max(dp[j],dp[j-stones[i]]+stones[i]);
            }
        }
        return Math.abs(Math.abs(sum-dp[aver])-dp[aver]);
    }
}

15. 第三节总结

  1. 01背包理论基础|:主要讲解背包问题的分类,01背包问题是什么。
    重点:01背包问题的二维方法(动规五步骤)
    遍历方法两种都可以。背包重量是从0到n。
  2. 01背包理论基础||:讲解01背包的一维方法
    只能先遍历物品,再遍历背包。为了防止一个重量下只加入一个物品。
    并且背包的重量是从n到weight[i]递减,是为了防止重复加入第i个物品。
  3. 分割等和子集:
    剪枝:和为奇数的直接排除。
    重点:转换为01背包——>dp数组的容量是sum/2。如果能找到和为sum/2的子集就可划分为两个和相等的子集。
  4. 最后一块石头的重量||:
    重点:题目说的两个两个石头碰撞,需要自己抽象为两堆石头碰撞。每次取两个,其实就是直接将石头堆划分为和最接近半值的两堆,然后再碰撞,剩下的石头最小。

背包问题最难的还是,将问题转换为背包问题的思维,以及dp数组的含义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值