各种树
二叉树
分左右子数,节点的度不超过2。
二叉排序树
又称二叉搜索树,二叉查找树。二叉排序树或者是一棵空树,或者是具有下列性质的二叉树;
(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
(4)没有键值相等的节点。
满二叉树
除叶子结点外的所有结点均有两个子结点。
完全二叉树
堆的定义
n个关键字序列Kl,K2,…,Kn称为(Heap),当且仅当该序列满足如下性质(简称为堆性质):
(1)ki<=k(2i)且ki<=k(2i+1)(1≤i≤ n/2),当然,这是小根堆,大根堆则换成>=号。//k(i)相当于二叉树的非叶子结点,K(2i)则是左子节点,k(2i+1)是右子节点,若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:
树中任一非叶子结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。
大根堆和小根堆:根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆,又称最小堆。根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆,又称最大堆。注意:①堆中任一子树亦是堆。②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。
高度
堆可以被看成是一棵树,结点在堆中的高度可以被定义为从本结点到叶子结点的最长简单下降路径上边的数目;定义堆的高度为树根的高度。我们将看到,堆结构上的一些基本操作的运行时间至多是与树的高度成正比,为O(lgn)。
它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
红黑树
红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。关联数组和数组类似,由以名称作为键的字段和方法组成。
它包含标量数据,可用索引值来单独选择这些数据,和数组不同的是,关联数组的索引值不是非负的整数而是任意的标量。这些标量称为Keys,可以在以后用于检索数组中的数值。
关联数组的元素没有特定的顺序,你可以把它们想象为一组卡片。每张卡片上半部分是索引而下半部分是数值。
红黑树需要遵从下面的5条性质:(1)节点要么是红色要么是黑色;
(2)根节点为黑色;
(3)叶子节点即NIL节点必定为黑色;
(4)红色节点的孩子节点必定为黑色;
(5)从任一节点到叶子节点,所包含的黑色节点数目相同,即黑高度相同;
上面的5条规则,主要是第(4)、(5)两条保证了红黑树的近似完整平衡性。
红黑树的旋转操作
(1)右旋转
(2)左旋转
(3)先左旋再右旋
(4)先右旋再左旋
AVL树
AVL是最先发明的自平衡二叉查找树算法。在AVL中任何节点的两个儿子子树的高度最大差别为一,所以它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
Treap树
Treap是一棵二叉排序树,它的左子树和右子树分别是一个Treap,和一般的二叉排序树不同的是,Treap纪录一个额外的数据,就是优先级。Treap在以关键码构成二叉排序树的同时,还满足堆的性质(在这里我们假设节点的优先级大于该节点的孩子的优先级)。但是这里要注意的是Treap和二叉堆有一点不同,就是二叉堆必须是完全二叉树,而Treap并不一定是。
伸展树
伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入、查找和删除操作。它由Daniel Sleator和Robert Tarjan创造。它的优势在于不需要记录用于平衡树的冗余信息。在伸展树上的一般操作都基于伸展操作。
左偏树
堆结构是一种隐式数据结构(implicit data structure),用完全二叉树表示的堆在数组中是隐式存贮的(即没有明确的指针或其他数据能够重构这种结构)。由于没有存贮结构信息,这种描述方法空间利用率很高,事实上没有空间浪费。尽管堆结构的时间和空间效率都很高,但它不适合于所有优先队列的应用,尤其是当需要合并两个优先队列或多个长度不同的队列时。因此需要借助于其他数据结构来实现这类应用,左偏树(leftist tree)就能满足这种要求。
霍夫曼树(最优二叉树)
哈夫曼编码是哈夫曼树的一个应用。哈夫曼编码应用广泛,如 JPEG中就应用了哈夫曼编码。 首先介绍什么是哈夫曼树。哈夫曼树又称最优二叉树, 是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的 路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的带权路径长度记为WPL= (W1*L1+W2*L2+W3*L3+...+Wn*Ln) ,N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。可以证明哈夫曼树的WPL是最小的。
在数据结构与算法中,人们把最小带权路径长度的二叉树称为霍夫曼树或者最优二叉树。
B树(Balanced tree)
1.树中每个结点最多含有m个孩子(m>=2);
2.除根结点和叶子结点外,其它每个结点至少有[ceil(m / 2)]个孩子(其中ceil(x)是一个取上限的函数);
3.若根结点不是叶子结点,则至少有2个孩子(特殊情况:没有孩子的根结点,即根结点为叶子结点,整棵树只有一个根节点);
4.所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息(可以看做是外部接点或查询失败的接点,实际上这些结点不存在,指向这些结点的指针都为null);
5.每个非终端结点中包含有n个关键字信息: (n,P0,K1,P1,K2,P2,......,Kn,Pn)。其中:
a) Ki (i=1...n)为关键字,且关键字按顺序升序排序K(i-1)< Ki。
b) Pi为指向子树根的接点,且指针P(i-1)指向子树种所有结点的关键字均小于Ki,但都大于K(i-1)。
c) 关键字的个数n必须满足: [ceil(m / 2)-1]<= n <= m-1。
B树应用与外存数据结构。
B+树
一棵m阶的B+树和m阶的B树的异同点在于:
1.有n棵子树的结点中含有n-1 个关键字; (与B树n棵子树有n-1个关键字 保持一致);
2.所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大的顺序链接。 (而B树的叶子节点并没有包括全部需要查找的信息);
3.所有的非终端结点可以看成是索引部分,结点中仅含有其子树根结点中最大(或最小)关键字。 (而B树的非终节点也包含需要查找的有效信息);
B+-tree的应用: VSAM(虚拟存储存取法)。
数据库索引采用B+树的主要原因是 B树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。正是为了解决这个问题,B+树应运而生。B+树只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作(或者说效率太低)。
B*树
B*-tree是B+-tree的变体,在B+树的基础上(所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针),B*树中非根和非叶子结点再增加指向兄弟的指针;B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2)。
R树(Rectangle tree)
R树是B树在高维空间的扩展,是一棵平衡树。每个R树的叶子结点包含了多个指向不同数据的指针,这些数据可以是存放在硬盘中的,也可以是存在内存中。根据R树的这
种数据结构,当我们需要进行一个高维空间查询时,我们只需要遍历少数几个叶子结点所包含的指针,查看这些指针指向的数据是否满足要求即可。这种方式使我们不必
遍历所有数据即可获得答案,效率显著提高。
一棵R树满足如下的性质:
1. 除非它是根结点之外,所有叶子结点包含有m至M个记录索引(条目)。作为根结点的叶子结点所具有的记录个数可以少于m。通常,m=M/2。
2. 对于所有在叶子中存储的记录(条目),I是最小的可以在空间中完全覆盖这些记录所代表的点的矩形(注意:此处所说的“矩形”是可以扩展到高维空间的)。
3. 每一个飞叶子结点拥有m至M个孩子结点,除非它是根结点。
4. 对于在非叶子结点上的每一个条目,i是最小的可以在空间上完全覆盖这些条目所代表的店的矩形(同性质2)。
5. 所有叶子结点都位于同一层,因此R树为平衡树。
树的运算
遍历
如上图:
前序遍历: ABDECF
中序遍历: DBEAFC
后序遍历: DEBFCA
深度优先遍历与广度优先遍历是图遍历的算法(不明白好好研究一下数据结构图遍历那一章)。
深度优先遍历
深度优先遍历从某个顶点出发,首先访问这个顶点,然后找出刚访问这个结点的第一个未被访问的邻结点,然后再以此邻结点为顶点,继续找它的下一个新的顶点进行访问,重复此步骤,直到所有结点都被访问完为止。
广度优先遍历
广度优先遍历从某个顶点出发,首先访问这个顶点,然后找出这个结点的所有未被访问的邻接点,访问完后再访问这些结点中第一个邻接点的所有结点,重复此方法,直到所有结点都被访问完为止。
可以看到两种方法最大的区别在于前者从顶点的第一个邻接点一直访问下去再访问顶点的第二个邻接点;后者从顶点开始访问该顶点的所有邻接点再依次向下,一层一层的访问。
总结:一个向下…一个从左到右。