K-mediods算法

K-medoids是一种基于划分方法的聚类算法,是对K-means的改进,适用于处理大型数据集,能产生紧凑的簇。它对噪声不敏感,但需要预先设定簇数和中心点,且计算复杂度较高。算法过程包括随机选择初始中心点,计算样本点到中心点的距离并分配簇,然后更新中心点直至收敛。
摘要由CSDN通过智能技术生成

K-mediods(K中心点)算法介绍

一、K-mediods算法介绍

a) 话说,聚类算法可以被分为那么几种,比如基于划分方法的、基于层次方法的、基于密度方法的、基于网格方法的、基于模型方法的;K-mediods算法就是基于划分方法的一种聚类算法,确切的说,是对K-means算法的一种改进算法。

二、K-mediods算法优缺点

a) K-mediods算法具有能够处理大型数据集,结果簇相当紧凑,并且簇与簇之间明显分明的优点,这一点和K-means算法相同。

b) 同时,该算法也有K-means同样的缺点,如,必须事先确定类簇数和中心点,簇数和中心点的选择对结果影响很大;一般在获得一个局部最优的解后

### 回答1: k-medoids算法是一种聚类算法,它是k-means算法的一种改进。k-medoids算法的主要思想是选择k个代表性样本作为聚类中心,然后将每个样本分配到最近的聚类中心中。与k-means算法不同的是,k-medoids算法使用代表性样本作为聚类中心,而不是使用样本的平均值作为聚类中心。 以下是使用Python实现k-medoids算法的代码: ```python import numpy as np from sklearn.metrics.pairwise import pairwise_distances def k_medoids(X, k, max_iter=100): # 初始化聚类中心 centers = np.random.choice(len(X), k, replace=False) # 迭代更新聚类中心 for i in range(max_iter): # 计算每个样本到聚类中心的距离 distances = pairwise_distances(X, X[centers]) # 找到每个样本距离最近的聚类中心 labels = np.argmin(distances, axis=1) # 更新聚类中心 for j in range(k): # 找到属于第j个聚类的样本 indices = np.where(labels == j)[0] # 计算这些样本与其他样本的距离之和 total_distance = np.sum(pairwise_distances(X[indices], X[indices])) # 找到距离最小的样本作为新的聚类中心 min_distance = np.inf min_index = centers[j] for index in indices: distance = np.sum(pairwise_distances(X[index].reshape(1, -1), X[indices])) if distance < min_distance: min_distance = distance min_index = index centers[j] = min_index # 返回聚类结果和聚类中心 distances = pairwise_distances(X, X[centers]) labels = np.argmin(distances, axis=1) return labels, centers ``` 该代码使用numpy和sklearn库实现了k-medoids算法。其中,X是样本数据,k是聚类数,max_iter是最大迭代次数。该算法首先随机选择k个样本作为聚类中心,然后迭代更新聚类中心,直到达到最大迭代次数或聚类中心不再改变。在更新聚类中心时,该算法首先计算每个样本到聚类中心的距离,然后找到每个样本距离最近的聚类中心,最后找到距离最小的样本作为新的聚类中心。最终,该算法返回聚类结果和聚类中心。 ### 回答2: k-medoids算法(又称为PAM算法)是聚类算法中的一种。相比于k-means算法,k-medoids更加健壮,能够处理噪声和离群值。k-medoids算法的核心思想就是在k个点中选出一个点作为中心点(即medoid),将其他点分配到距离它们最近的中心点,最终达到聚类的效果。 下面是用Python实现k-medoids算法的代码: ```python import numpy as np from sklearn.metrics.pairwise import pairwise_distances class KMedoids: def __init__(self, k=3, max_iterations=100): self.k = k self.max_iterations = max_iterations def fit(self, X): n_samples, n_features = X.shape # Initialize medoids = np.zeros(self.k, dtype=int) dists = pairwise_distances(X, metric='euclidean') np.fill_diagonal(dists, 0) # Randomly select medoids medoids = np.random.choice(n_samples, self.k, replace=False) # Assign samples to closest medoids labels = np.argmin(dists[medoids], axis=0) for i in range(self.max_iterations): # Update medoids for j in range(self.k): indices = np.where(labels == j)[0] costs = dists[indices, :][:, indices] total_cost = np.sum(costs, axis=1) new_medoid = indices[np.argmin(total_cost)] medoids[j] = new_medoid # Assign samples to closest medoids labels = np.argmin(dists[medoids], axis=0) centroids = X[medoids] return medoids, centroids, labels ``` 这段代码使用了NumPy库和scikit-learn的pairwise_distances函数。输入数据是一个n_samples×n_features的矩阵X,其中n_samples表示样本数,n_features表示特征数。k是聚类的簇数,max_iterations是迭代次数。 首先,将样本两两之间的距离计算出来,并且将对角线上的值设为0。接着,随机选择k个点作为medoids。然后按照距离最近的原则,将其他点分配到距离它们最近的medoids。之后,重复以下步骤: 1. 计算每个簇内距离的总和,将最小的距离和对应的点作为新的medoid。 2. 按照距离最近的原则,将其他点分配到距离它们最近的medoids。 最终返回medoids,centroids和labels,其中medoids表示每个簇的medoid的索引,centroids表示每个簇的中心点,labels表示每个样本所属的簇的索引。 ### 回答3: k-medoids算法是一种常用的聚类算法,与k-means算法相比,它使用代表点(medoids)代替了质心作为聚类中心,因此更具有稳健性。 以下是使用Python实现的k-medoids算法的代码。 1. 导入必要的库 ``` import numpy as np from sklearn.metrics.pairwise import pairwise_distances ``` 2. 定义k-medoids函数 ``` def kmedoids(D, k, max_iter=100): # 随机初始化k个medoids M = list(range(D.shape[0])) np.random.shuffle(M) M = np.array(M[:k]) M_old = np.copy(M) # 迭代k-medoids算法 for _ in range(max_iter): # 计算每个点到medoid的距离 D_M = pairwise_distances(D, D[M]) # 选择最近的medoid作为每个点的cluster labels = np.argmin(D_M, axis=1) # 更新每个cluster的medoid for i in range(k): M[i] = np.median(np.where(labels == i)[0]) # 如果medoids没有改变,则收敛 if np.all(M == M_old): break M_old = np.copy(M) # 返回聚类结果 return labels, M ``` 此函数接受一个距离矩阵D、聚类个数k和最大迭代次数max_iter作为输入。它首先随机选取k个点作为medoids,然后为每个点找到最近的medoid,并将它们分配到相应的cluster中。接下来,它更新每个cluster的medoid,直到收敛为止。最后,它返回每个点所属的cluster和最终的medoids。 3. 示例应用 为了演示如何使用该k-medoids函数,下面通过一个简单的示例来说明。 假设有10个样本,每个样本有3个特征: ``` X = np.random.rand(10, 3) ``` 现在我们想使用k-medoids算法将这些点划分成3个cluster: ``` labels, M = kmedoids(D=pairwise_distances(X), k=3) ``` 其中,D是每个点之间的距离矩阵,由`pairwise_distances`函数计算得出。最终的聚类结果存储在`labels`变量中,medoids存储在`M`变量中。 我们可以将聚类结果可视化: ``` import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') colors = ['r', 'g', 'b'] for i in range(3): idx = np.where(labels == i)[0] ax.scatter(X[idx, 0], X[idx, 1], X[idx, 2], c=colors[i], marker='o') ax.scatter(X[M, 0], X[M, 1], X[M, 2], c='black', marker='x', s=100) ``` 此代码将结果可视化为一个三维散点图,每个cluster用不同的颜色表示,medoids用黑色的X表示。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值