深度学习的专业术语
作者:陈若愚
QQ:2389388826
日期:2020年2月26日
Abstract
最近在整理学术论文的过程中发现自己的专业术语不完全正确,因此做如下的整理。主要是围绕着深度学习技术,通过做过的东西延申其基本公式及英文表达。文本采用Markdown方式编辑[1]。
一、人工神经网络
1.人工神经网络:Artificially neural network
通常指仅由全连接层构成的神经网络
2.全连接层:Fully connected layer
3.隐层:Hiden layer
4.神经元:neuron / 节点:node
指每一层全连接层所含的参数个数
5.多层感知机:Multilayer Perceptron (MLP)
二、2D卷积神经网络
1. 前向传播: Forward Propagation
2. 卷积神经网络: Convolutional neural network
3. 卷积: Convolution
卷积步长:stride
填充:padding
填充是针对卷积后卷积层的receptive filed是否发生变化
4. 卷积运算: Convolution operation
5. 卷积核: Convolutional filter
6. 卷积层: Convolutional layer
7. 描述2D卷积卷积核大小:Kernel size / Receptive field
通常描述是卷积核的width和height的大小,比如3*3的卷积核,而与channel方向的卷积核长度无关,长度只与前一层卷积核个数有关。
8. 激活函数:Activation function
(1)Sigmoid:
(2)Tanh:
(3)Relu:
(4)Elu:
(5)Selu:
(6)Softplus:
(7)Softmax:
9. 最大池化:Max pooling
10. 平均池化:Mean pooling
11. BN: Batch Normalization
一种非常有效的正则化方法
12. Dropout
一种正则化方法
Exmaple:
In order to avoid over fitting prob- lem in the designed networks, we adopted the “Dropout” method to drop out 25% hidden neurons after the third fully connected layers.
13. L 2 L_{2} L2 loss / Suqared loss
14. MSE: Mean square error
15. L 2 L_{2} L2 正则化: L 2 L_{2} L2 regularization
16. 反向传播:backpropagation
17. 优化方法:Optimization
注:编程中的函数习惯用Optimizer,在学术写作尽量用Optimization,例如Adam optimization method
(1)Gradient Descent
(2)SGD
(3)Momentum
(4)Adagrad
(5)Adadelta
(6)RMSprop
(7)Adam
18. 学习率:Learning rate
19. 指数衰减学习率:Learning rate exponential decay
20. 训练步数:Step
经过一次优化为一步
21. 训练周期:Epoch
将数据集全部输入一轮回为一个epoch
22. 收敛:Convergence
当在训练神经网络时,准确率或者损失函数随训练步数的增加而变化很小时即为收敛
23. 回归:Regression
24. 分类:Classification
25. 交叉熵损失函数:Cross-entropy
常用于多分类任务的代价函数
26. 批量输入大小:Batch size
27. 学习曲线:Learning curve
28. 训练集,交叉验证集,测试集:Training data, cross-validation data, test data
29. 精度:Precise
多评价回归问题
30. 准确率:Accuracy
多评价分类问题
Reference
[1] https://www.zybuluo.com/mdeditor?url=https://www.zybuluo.com/static/editor/md-help.markdown
[2] https://developers.google.com/machine-learning/glossary#c
[3] https://acadgild.com/blog/data-science-glossary-deep-learning-key-terms
[5] Luo G , Dong S , Wang K , et al. Multi-Views Fusion CNN for Left Ventricular Volumes Estimation on Cardiac MR Images[J]. Biomedical Engineering, IEEE Transactions on, 2018, 65(9):1924-1934.