1、获取列名
1.1.链表推导式
语法:[col for col in df]
返回结果: [‘cvr1’, ‘cvr2’, ‘cvr3’, ‘cvr4’]
结果类型:list
1.2.通过columns属性
columns属性返回Index,
columns.values属性返回 numpy.ndarray,可通过 tolist(), 或者 list(ndarray) 转换为list
print(type(df.columns))
print(type(df.columns.values))
print(type(df.columns.tolist()),":"+"\n",df.columns.tolist())
print(type(df.columns.values.tolist()),":"+"\n",df.columns.values.tolist())
1.3.直接使用 list ,返回一个含有columnsd的list列表
print(list(df))
返回结果: [‘cvr1’, ‘cvr2’, ‘cvr3’, ‘cvr4’]
结果类型:list
2、读取多个文件,合并到一个DataFrame中
2.1 使用通配符读取多个文件
2.2 循环读取单个文件,然后concat到一个DataFrame中
train_data_df = pd.DataFrame()
for train_promotion_tag in promotion_list:
data_csv = "features_for_{job_type}.csv".format(job_type=job_type)
print("读取文件{0}".format(data_csv))
tmp = pd.read_csv(data_csv)
train_data_df = pd.concat([train_data_df, tmp],ignore_index=True)