数论 · 最大公因数 + 裴蜀定理

1 最大公因数 gcd

n = ∏ p i t 1 i   m = ∏ p i t 2 i n = \prod p_i ^ {t1_i}\ m = \prod p_i ^ {t2 ^ i} n=pit1i m=pit2i

gcd ⁡ ( n , m ) = ∏ p i min ⁡ ( t 1 i , t 2 i ) \gcd (n, m) = \prod p_i ^ {\min (t1_i, t2_i)} gcd(n,m)=pimin(t1i,t2i)

代码实现

#include<bits/stdc++.h>
using namespace std;
 
int n, m;
 
inline int gcd (int a, int b)
{
    if (!a) return b;
    return gcd (b % a, a);
}
 
int main ()
{
    scanf ("%d %d", &n, &m);
    printf ("%d\n", gcd (n, m));
    return 0;
}

题目

Problem C: 「一本通 6.3 例 2」「NOIP2009」Hankson 的趣味题

Problem B: 「一本通 6.3 例 1」反素数 Antiprime

2 裴蜀定理

形式

基本形式

求解 a x + b y = c ax+by=c ax+by=c

模板题面

给定一个包含 n n n 个元素的整数序列 A A A,记作 A 1 A_1 A1, A 2 A_2 A2, A 3 A_3 A3, ⋯ \cdots , A n A_n An

求另一个包含 n n n 个元素的待定整数序列 X X X,

S = ∑ i = 1 n A i × X i S = \sum\limits_{i=1}^n A_i \times X_i S=i=1nAi×Xi

使得 S > 0 S>0 S>0 S S S 尽可能小。

定理

求解 a x + b y = c ax+by=c ax+by=c 的充要条件是 gcd ⁡ ( a , b ) ∣ c \gcd (a,b) | c gcd(a,b)c

证明:

s = gcd ⁡ ( a , b ) s=\gcd(a,b) s=gcd(a,b),显然 s ∣ a s|a sa,并且 s ∣ b s|b sb

可以提取公因式得: s × ( a ′ x + b ′ y ) = c s \times (a'x+b'y)=c s×(ax+by)=c

由此可得, s ∣ c s|c sc

模板题求解

对于输入的所有 A i A_i Ai,我们取他们所有的 g c d gcd gcd 即可。

代码
#include<bits/stdc++.h>
using namespace std;

int n, m;
int ans;

inline int gcd (int a, int b)
{
	if (!a) return b;
	return gcd (b % a, a);
}

int main ()
{
	scanf ("%d", &n);
	for (register int i = 1; i <= n; ++i)
	{
		scanf ("%d", &m);
		if (m < 0) m = -m;
		ans = gcd (ans, m);
	}
	printf ("%d\n", ans);	
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值