cinta扩展作业1:bezout定理的推广证明

1、请证明以下定理:

对任意n个正整数,它们的最大公因子d是这n个整数的某个整数的线性组合,即 d = a 0 s 0 + a 1 s 1 + a 2 s 2 + . . . + a n − 1 s n − 1 d = a_{0} s_{0} + a_{1} s_{1} + a_{2} s_{2} + ... + a_{n-1} s_{n-1} d=a0s0+a1s1+a2s2+...+an1sn1,即 s i s_i si 都是整数。

证明如下:
构造集合
S = { a 0 s 0 + a 1 s 1 + . . . + a n − 1 s n − 1 : s i ∈   Z 且 a 0 s 0 + a 1 s 1 + . . . + a n − 1 s n − 1 ≥ 0 } S= \left\{a_{0} s_{0} + a_{1} s_{1} + ... + a_{n-1} s_{n-1}:s_i\in\ \mathbb{Z} 且a_{0} s_{0} + a_{1} s_{1} + ... + a_{n-1} s_{n-1}\geq 0\right\} S={a0s0+a1s1+...+an1sn1:si Za0s0+a1s1+...+an1sn10}
显然集合 S S S非空,根据良序原则, S S S中存在最小值 d d d,令 d = a 0 s 0 + a 1 s 1 + . . . + a n − 1 s n − 1 d=a_{0} s_{0} + a_{1} s_{1} + ... + a_{n-1} s_{n-1} d=a0s0+a1s1+...+an1sn1
以下分两部分证明:

1)证明 d d d a 0 , a 1 … … , a n − 1 a_{0},a_{1}……,a_{n-1} a0,a1,an1 的公因子

由除法定理,设 a 0 = d q 0 + r 0 a_{0}=dq_{0}+r_{0} a0=dq0+r0, 且 0 ≤ r 0 < d 。 0\leq r_{0}<d。 0r0<d则有
r 0 = a 0 − d q 0 = a 0 − ( a 0 s 0 + a 1 s 1 + . . . + a n − 1 s n − 1 ) q = a 0 ( 1 − s 0 q 0 ) + ( a 1 + a 2 + . . . + a n − 1 ) ( − s 0 q 0 ) r_{0}=a_{0}-dq_{0}=a_{0}-(a_{0} s_{0} + a_{1} s_{1} + ... + a_{n-1} s_{n-1})q=a_{0}(1-s_{0}q_{0})+(a_{1}+a_{2}+...+a_{n-1} ) (-s_{0}q_{0}) r0=a0dq0=a0(a0s0+a1s1+...+an1sn1)q=a0(1s0q0)+(a1+a2+...+an1)(s0q0)
显然, ( 1 − s 0 q 0 ) , ( a 1 + a 2 + . . . + a n − 1 ) ∈   Z (1-s_{0}q_{0}),(a_{1}+a_{2}+...+a_{n-1} )\in\ \mathbb{Z} (1s0q0),(a1+a2+...+an1) Z ,且因为 r 0 > 0 r_{0}>0 r0>0 ,则 r 0 ∈   S 。 r_{0}\in\ S。 r0 S

又因为 r 0 < d r_{0}<d r0<d,这与 d d d S S S中最小元素相矛盾,因此 r 0 = 0 r_{0}=0 r0=0
d ∣ a 0 d\mid a_{0} da0,同理也可得 d ∣ a 1 d\mid a_{1} da1 d ∣ a 2 d\mid a_{2} da2…… d ∣ a n − 1 d\mid a_{n-1} dan1,故 d d d a 0 , a 1 … … , a n − 1 a_{0},a_{1}……,a_{n-1} a0,a1,an1 的公因子

2)证明d是所有公因子中最大的

设存在另一个 a 0 , a 1 … … , a n − 1 a_{0},a_{1}……,a_{n-1} a0,a1,an1的公因子 d ′ d' d,则有 a 0 = d ′ t 0 a_{0}=d't_{0} a0=dt0 a 1 = d ′ t 1 a_{1}=d't_{1} a1=dt1、……、 a n − 1 = d ′ t n − 1 a_{n-1}=d't_{n-1} an1=dtn1 t i ∈   Z t_{i}\in\ \mathbb{Z} ti Z ,i=1,2,……n-1
那么 d = a 0 s 0 + a 1 s 1 + . . . + a n − 1 s n − 1 = d ′ ( t 0 s 0 + t 1 s 1 + … … + t n − 1 s n − 1 ) d=a_{0} s_{0} + a_{1} s_{1} + ... + a_{n-1} s_{n-1}=d'(t_{0}s_{0}+t_{1}s_{1}+……+t_{n- 1}s_{n-1}) d=a0s0+a1s1+...+an1sn1=d(t0s0+t1s1++tn1sn1)
显然, ( t 0 s 0 + t 1 s 1 + … … + t n − 1 s n − 1 ) ∈   Z (t_{0}s_{0}+t_{1}s_{1}+……+t_{n- 1}s_{n-1})\in\ \mathbb{Z} (t0s0+t1s1++tn1sn1) Z,则 d ′ ∣ d d'\mid d dd成立,故d是d是所有公因子中最大的。

综上

d = g c d ( a 0 , a 1 , … … , a n − 1 ) d=gcd(a_{0},a_{1},……,a_{n-1}) d=gcd(a0,a1,,an1)成立,
又因 d = a 0 s 0 + a 1 s 1 + . . . + a n − 1 s n − 1 d=a_{0} s_{0} + a_{1} s_{1} + ... + a_{n-1} s_{n-1} d=a0s0+a1s1+...+an1sn1
g c d ( a 0 , a 1 , … … , a n − 1 ) = a 0 s 0 + a 1 s 1 + . . . + a n − 1 s n − 1 gcd(a_{0},a_{1},……,a_{n-1})=a_{0} s_{0} + a_{1} s_{1} + ... + a_{n-1} s_{n-1} gcd(a0,a1,,an1)=a0s0+a1s1+...+an1sn1成立

2、利用以上定理证明,n个整数的最大公因子满足以下等式:

gcd(a0, a1, a2, … , a_{n-1}) = gcd(a0, gcd(a1, a2, … , a_{n-1}))

由上面的定理可得
g c d ( a 0 , a 1 , a 2 , . . . , a n − 1 ) gcd(a0, a1, a2, ... , a_{n-1}) gcd(a0,a1,a2,...,an1)= a 0 s 0 + a 1 s 1 + . . . + a n − 1 s n − 1 a_{0} s_{0} + a_{1} s_{1} + ... + a_{n-1} s_{n-1} a0s0+a1s1+...+an1sn1 ——(1)
g c d ( a 0 , g c d ( a 1 , a 2 , . . . , a n − 1 ) ) gcd(a0, gcd(a1, a2, ... , a_{n-1})) gcd(a0,gcd(a1,a2,...,an1))= a 0 s 0 ′ + g c d ( a 1 , a 2 , . . . , a n − 1 ) s 1 ′ a_{0} s_{0}' + gcd(a1, a2, ... , a_{n-1}) s_{1}' a0s0+gcd(a1,a2,...,an1)s1 ——(2)
g c d ( a 1 , a 2 , . . . , a n − 1 ) gcd(a1, a2, ... , a_{n-1}) gcd(a1,a2,...,an1)= a 1 s 1 ′ ′ + . . . + a n − 1 s n − 1 ′ ′ a_{1} s_{1}'' + ... + a_{n-1} s_{n-1}'' a1s1+...+an1sn1 ——(3)

由(2)、(3)式子可得
g c d ( a 0 , g c d ( a 1 , a 2 , . . . , a n − 1 ) ) gcd(a0, gcd(a1, a2, ... , a_{n-1})) gcd(a0,gcd(a1,a2,...,an1))= a 0 s 0 ′ + ( a 1 s 1 ′ ′ + . . . + a n − 1 s n − 1 ′ ′ ) s 1 ′ a_{0} s_{0}' + (a_{1} s_{1}'' + ... + a_{n-1} s_{n-1}'')s_{1}' a0s0+(a1s1+...+an1sn1)s1= a 0 s 0 ′ + a 1 s 1 ′ s 1 ′ ′ + . . . + a n − 1 s 1 ′ s n − 1 ′ ′ a_{0} s_{0}' + a_{1} s_{1}'s_{1}'' + ... + a_{n-1} s_{1}'s_{n-1}'' a0s0+a1s1s1+...+an1s1sn1 ——(4)

由于所有的 s i 、 s i ′ 、 s i ′ ′ s_{i}、s_{i}'、s_{i}'' sisisi均是整数,将(4)式与(1)式进行比对后,显然等式成立

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GOAT_0x02

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值