[NOI Online 2020 #2 提高 B] 子序列问题 (dp+线段树)

39 篇文章 0 订阅
38 篇文章 0 订阅

真的是事后诸葛亮,一下考场就知道怎么做了,现在把题解补回来

看到这个问题,我第一下想到的就是 d p dp dp

如何 d p dp dp

d p [ i ] dp[i] dp[i] 为以 i i i 为右端点的所有子串的答案之和,那么最后要输出的答案就是 a n s = ∑ i = 1 n d p [ i ] ans=\sum_{i=1}^{n}dp[i] ans=i=1ndp[i]

至于怎么维护这个 d p [ i ] dp[i] dp[i],我一开始想的做法也很简单,直接暴力。

也就是说,对于每一个右端点 r r r,从右向左枚举左端点 l l l,然后统计答案。

但是如何维护 f ( l , r ) f(l,r) f(l,r) 呢?

经典套路:对于每一个数,我们把它出现在序列 [ 1 , n ] [1,n] [1,n] 中最右边的那个位置找出来。对于数 x x x,记为 l a s t [ x ] last[x] last[x]

假设我们现在已经求出了 f ( i , r ) f(i,r) f(i,r),然后要求 f ( i − 1 , r ) f(i-1,r) f(i1,r),那么显然,若 l a s t [ a [ i − 1 ] ] ≠ i last[a[i-1]]\not=i last[a[i1]]=i,就说明还有一个与 a [ i − 1 ] a[i-1] a[i1] 相同的数出现在位置 i − 1 i-1 i1 的右边,则 f ( i − 1 , r ) = f ( i , r ) f(i-1,r)=f(i,r) f(i1,r)=f(i,r)。否则,若 l a s t [ a [ i − 1 ] ] = i last[a[i-1]]=i last[a[i1]]=i,则 f ( i − 1 , r ) = f ( i , r ) + 1 f(i-1,r)=f(i,r)+1 f(i1,r)=f(i,r)+1

然后求完 d p [ i ] dp[i] dp[i] 后记得更新 l a s t last last

那么这种方法是 O ( n 2 ) O(n^2) O(n2) 的,只能拿 50 50 50 分。

如何提高?

我们回想一下刚才加粗的这一段:

假设我们现在已经求出了 f ( i , r ) f(i,r) f(i,r),然后要求 f ( i − 1 , r ) f(i-1,r) f(i1,r),那么显然,若 l a s t [ a [ i − 1 ] ] ≠ i last[a[i-1]]\not=i last[a[i1]]=i,就说明还有一个与 a [ i − 1 ] a[i-1] a[i1] 相同的数出现在位置 i − 1 i-1 i1 的右边,则 f ( i − 1 , r ) = f ( i , r ) f(i-1,r)=f(i,r) f(i1,r)=f(i,r)。否则,若 l a s t [ a [ i − 1 ] ] = i last[a[i-1]]=i last[a[i1]]=i,则 f ( i − 1 , r ) = f ( i , r ) + 1 f(i-1,r)=f(i,r)+1 f(i1,r)=f(i,r)+1

考虑如何优化?

先画个图:

在这里插入图片描述
整个图的下方的方格表示的是序列,方格上面箭头指着的数是这个位置的编号,方格内的数代表这个位置的数。

如图,其中 x x x 代表数 a [ i ] a[i] a[i],然后我们找到 l a s t [ x ] last[x] last[x] 的位置,那么显然,在序列 [ l a s t [ x ] + 1 , i − 1 ] [last[x]+1,i-1] [last[x]+1,i1] 中,每一个数都与 x x x 不同,不妨记为 o o o(注意:每一个 o o o 之间有可能不同);在序列 [ 1 , l a s t [ x ] − 1 ] [1,last[x]-1] [1,last[x]1] 中,每一个数都有可能与 x x x 相同,也可能不同,不妨记为 a a a

然后我们现在要求出每一个 f ( l , i ) f(l,i) f(l,i) ( 1 ≤ l ≤ i ) (1\leq l\leq i) (1li)

分情况讨论:

  1. 1 ≤ l ≤ l a s t [ x ] 1\leq l\leq last[x] 1llast[x]

    在这里插入图片描述
    我们就以这幅图为例。我们对比一下两段序列(红和蓝),发现红色的只是比蓝色的多了一个 x x x,而这个多出来的 x x x 并没有贡献。

    所以在这种情况下,必有 f ( l , i ) = f ( l , i − 1 ) f(l,i)=f(l,i-1) f(l,i)=f(l,i1)

    平方后也相等。

  2. l a s t [ x ] < l < i last[x]<l<i last[x]<l<i

    在这里插入图片描述
    还是看图。

    你会发现,红框还是比蓝框多了个 x x x,但是由于 o o o 是不可能等于 x x x 的,所以这个 x x x 有贡献。

    那么 f ( l , i ) = f ( l , i − 1 ) + 1 f(l,i)=f(l,i-1)+1 f(l,i)=f(l,i1)+1

    平方后 f ( l , i ) 2 = f ( l , i − 1 ) 2 + 2 × f ( l , i − 1 ) + 1 f(l,i)^2=f(l,i-1)^2+2\times f(l,i-1)+1 f(l,i)2=f(l,i1)2+2×f(l,i1)+1

  3. l = i l=i l=i f ( l , i ) = 1 f(l,i)=1 f(l,i)=1

把三个讨论整合一下:

d p [ i ] = f ( 1 , i ) 2 + f ( 2 , i ) 2 + . . . + f ( l a s t [ x ] , i ) 2 + f ( l a s t [ x ] + 1 , i ) 2 + . . . + f ( i − 1 , i ) 2 + f ( i , i ) 2 = f ( 1 , i − 1 ) 2 + f ( 2 , i − 1 ) 2 + . . . + f ( l a s t [ x ] , i − 1 ) 2 + [ f ( l a s t [ x ] + 1 , i − 1 ) 2 + 2 × f ( l a s t [ x ] + 1 , i − 1 ) + 1 ] + . . . + [ f ( i − 1 , i − 1 ) 2 + 2 × f ( i − 1 , i − 1 ) + 1 ] + 1 = [ f ( 1 , i − 1 ) + f ( 2 , i − 1 ) + . . . + f ( i − 1 , i − 1 ) ] + 2 × [ f ( l a s t [ x ] + 1 , i − 1 ) + f ( l a s t [ x ] + 2 , i − 1 ) + . . . + f ( i − 1 , i − 1 ) ] + ( i − l a s t [ x ] − 1 ) + 1 = d p [ i − 1 ] + 2 × [ f ( l a s t [ x ] + 1 , i − 1 ) + f ( l a s t [ x ] + 2 , i − 1 ) + . . . + f ( i − 1 , i − 1 ) ] + ( i − l a s t [ x ] ) = d p [ i − 1 ] + 2 × ∑ l = l a s t [ x ] + 1 i − 1 f ( l , i − 1 ) + ( i − l a s t [ x ] ) \begin{aligned} dp[i]=&f(1,i)^2+f(2,i)^2+...+f(last[x],i)^2+f(last[x]+1,i)^2+...+f(i-1,i)^2+f(i,i)^2\\ =&f(1,i-1)^2+f(2,i-1)^2+...+f(last[x],i-1)^2+[f(last[x]+1,i-1)^2\\ &+2\times f(last[x]+1,i-1)+1]+...+[f(i-1,i-1)^2+2\times f(i-1,i-1)+1]+1\\ =&[f(1,i-1)+f(2,i-1)+...+f(i-1,i-1)]\\ &+2\times[f(last[x]+1,i-1)+f(last[x]+2,i-1)+...+f(i-1,i-1)]+(i-last[x]-1)+1\\ =&dp[i-1]+2\times[f(last[x]+1,i-1)+f(last[x]+2,i-1)+...+f(i-1,i-1)]+(i-last[x])\\ =&dp[i-1]+2\times \sum_{l=last[x]+1}^{i-1}f(l,i-1)+(i-last[x]) \end{aligned} dp[i]=====f(1,i)2+f(2,i)2+...+f(last[x],i)2+f(last[x]+1,i)2+...+f(i1,i)2+f(i,i)2f(1,i1)2+f(2,i1)2+...+f(last[x],i1)2+[f(last[x]+1,i1)2+2×f(last[x]+1,i1)+1]+...+[f(i1,i1)2+2×f(i1,i1)+1]+1[f(1,i1)+f(2,i1)+...+f(i1,i1)]+2×[f(last[x]+1,i1)+f(last[x]+2,i1)+...+f(i1,i1)]+(ilast[x]1)+1dp[i1]+2×[f(last[x]+1,i1)+f(last[x]+2,i1)+...+f(i1,i1)]+(ilast[x])dp[i1]+2×l=last[x]+1i1f(l,i1)+(ilast[x])

那么,我们就可以通过维护 ∑ l = l a s t [ x ] + 1 i − 1 f ( l , i − 1 ) \sum_{l=last[x]+1}^{i-1}f(l,i-1) l=last[x]+1i1f(l,i1) 来求出 d p [ i ] dp[i] dp[i]

如何维护?

考试的时候就是想到这就想不下去了

这个时候,我们就会用到一颗线段树。

这棵线段树用来维护每一个 f ( l , i − 1 ) f(l,i-1) f(l,i1) 的值的和,其中 1 ≤ l < i 1\leq l<i 1l<i

那么我们可以通过询问线段树中的区间 [ l a s t [ x ] + 1 , i − 1 ] [last[x]+1,i-1] [last[x]+1,i1] 就可以知道 ∑ l = l a s t [ x ] + 1 i − 1 f ( l , i − 1 ) \sum_{l=last[x]+1}^{i-1}f(l,i-1) l=last[x]+1i1f(l,i1) 是什么了。

然后考虑求完 d p [ i ] dp[i] dp[i] 如何更新线段树。

由于我们刚才已经得到:

  1. 1 ≤ l ≤ l a s t [ x ] 1\leq l\leq last[x] 1llast[x] 时,有 f ( l , i ) = f ( l , i − 1 ) f(l,i)=f(l,i-1) f(l,i)=f(l,i1),所以这一段不用管它,还是原来的值。

  2. l a s t [ x ] < l < i last[x]<l<i last[x]<l<i 时,有 f ( l , i ) = f ( l , i − 1 ) + 1 f(l,i)=f(l,i-1)+1 f(l,i)=f(l,i1)+1,所以我们只用把这一段的值整体加上 1 1 1 就好了。

  3. l = i l=i l=i 时,有 f ( l , i ) = 1 f(l,i)=1 f(l,i)=1,所以我们也把这个点修改成 1 1 1,这一个步骤可以和前一个并在一起。

这样就能更新所有的 f ( ) f() f() 了。

总时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),需要注意一下细节(比如离散化和卡常)。

代码如下:

#include<bits/stdc++.h>

#define N 1000010
#define mod 1000000007
#define ll long long

using namespace std;

int n,a[N],b[N];
int last[N];
ll dp[N],sum[N<<2],lazy[N<<2];

void down(const int k,const int l,const int r,const int mid)
{
	if(lazy[k])
	{
		sum[k<<1]+=lazy[k]*(mid-l+1);
		sum[k<<1|1]+=lazy[k]*(r-mid);
		lazy[k<<1]+=lazy[k];
		lazy[k<<1|1]+=lazy[k];
		lazy[k]=0;
	}
}

ll query(const int k,const int l,const int r,const int ql,const int qr)
{
	if(ql>qr) return 0;
	if(ql<=l&&r<=qr) return sum[k];
	const int mid=(l+r)>>1;
	ll ans=0;
	down(k,l,r,mid);
	if(ql<=mid) ans+=query(k<<1,l,mid,ql,qr);
	if(qr>mid) ans+=query(k<<1|1,mid+1,r,ql,qr);
	return ans;
}

void update(const int k,const int l,const int r,const int ql,const int qr)
{
	if(ql<=l&&r<=qr)
	{
		sum[k]=sum[k]+r-l+1;
		lazy[k]++;
		return;
	}
	const int mid=(l+r)>>1;
	down(k,l,r,mid);
	if(ql<=mid) update(k<<1,l,mid,ql,qr);
	if(qr>mid) update(k<<1|1,mid+1,r,ql,qr);
	sum[k]=sum[k<<1]+sum[k<<1|1];
}

int read()
{
	int x=0;
	char ch=getchar();
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9')
	{
		x=(x<<1)+(x<<3)+(ch^'0');
		ch=getchar();
	}
	return x;
}

int main()
{
	n=read();
	for(register int i=1;i<=n;i++)
		b[i]=a[i]=read();
	sort(b+1,b+n+1);
	const int nn=unique(b+1,b+n+1)-b-1;
	for(register int i=1;i<=n;i++)
		a[i]=lower_bound(b+1,b+nn+1,a[i])-b;//离散化
	for(register int i=1;i<=n;i++)
	{
		const ll len=query(1,1,n,last[a[i]]+1,i-1);
		dp[i]=(0ll+dp[i-1]+2*len+(i-last[a[i]]-1)+1)%mod;//计算dp[i]
		update(1,1,n,last[a[i]]+1,i);//更新f
		last[a[i]]=i;//记得更新last
	}
	ll ans=0;
	for(register int i=1;i<=n;i++)
		ans=(ans+dp[i])%mod;//求和
	printf("%lld\n",ans);
	return 0;
}

至于如何卡常建议去看一下洛谷讨论区。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值