子序列问题sequence(【CCF】NOI Online能力测试2 提高组第二题 )

探讨了如何求解一个正整数序列中,所有子区间的不同整数个数问题,采用特定算法来高效计算并输出答案对10^9+7取模的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本题代码稍后加入

题目背景

2s 512M

题目描述

给定一个长度为 n的正整数序列 A1, A2, ⋯, An 。定义一个函数 f(l,r) 表示:序列中下标在 [l,r]范围内的子区间中,不同的整数个数。换句话说,f (l,r) 就是集合 {Al,Al+1, ⋯,Ar } 的大小,这里的集合是不可重集,即集合中的元素互不相等。

现在,请你求出在这里插入图片描述

由于答案可能很大,请输出答案对 109+7 取模的结果。

输入格式

第一行一个正整数 n,表示序列的长度。

第二行 nn 个正整数,相邻两个正整数用空格隔开,表示序列 A1, A2, ⋯, An 。

输出格式

仅一行一个非负整数,表示答案对 109+7取模的结果。

输入输出样例

输入 #1

4
2 1 3 2

输出 #1

43

输入 #2

3
1 1 1

输出 #2

6
在这里插入图片描述
涂色游戏color(【CCF】NOI Online 能力测试2 提高组第一题 )
游戏match(【CCF】NOI Online能力测试2 提高组第三题 )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值