【AGC005D】~K Perm Counting(容斥,二分图,计数dp)

20 篇文章 0 订阅
10 篇文章 0 订阅

首先正面做不太好做,考虑容斥。

f ( m ) f(m) f(m) 表示排列中至少有 m m m ∣ P i − i ∣ = k |P_i-i|=k Pii=k 的方案数。

那么答案就是 ∑ i = 0 n ( − 1 ) i f ( i ) \sum\limits_{i=0}^n(-1)^if(i) i=0n(1)if(i)

原题可以看成一个二分图的形式:( n = 5 n=5 n=5 时)

左边是排列的编号,右边是权值,那么现在要做的就是连 n n n 条边,补全这个二分图,使得每个点的度数都是 1 1 1

那么考虑什么时候会出现 ∣ P i − i ∣ = k |P_i-i|=k Pii=k 的情况。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kmHchJ2G-1601819094543)(https://cdn.luogu.com.cn/upload/image_hosting/5s8onaw1.png)]

如图,当 k = 1 k=1 k=1 时,连出上图中的任意一条边都会使得 ∣ P i − i ∣ = k |P_i-i|=k Pii=k

我们考虑选出一些边,而且任意两条边都不能接在同一个端点上(因为每个点的度数要为 1 1 1)。

发现图中的边构成了若干条链且互不影响,于是把他们拿出来铺平:

此时如果要使得 ∣ P i − i ∣ = k |P_i-i|=k Pii=k,只有相邻两个点之间才会连边,而且 a 5 a_5 a5 1 1 1 (第 5 5 5 个点和第 6 6 6 个点)之间不会连边。

d p ( i , j , 0 / 1 ) dp(i,j,0/1) dp(i,j,0/1) 表示已经考虑了前 i i i 个点,其中连了 j j j 条边,第 i − 1 i-1 i1 个点和第 i i i 个点之间是/否连边的方案数。

那么容易得到:

{ d p ( i , j , 0 ) = d p ( i − 1 , j , 0 ) + d p ( i − 1 , j , 1 ) d p ( i , j , 1 ) = d p ( i − 1 , j − 1 , 0 ) \begin{cases} dp(i,j,0)=dp(i-1,j,0)+dp(i-1,j,1)\\ dp(i,j,1)=dp(i-1,j-1,0) \end{cases} {dp(i,j,0)=dp(i1,j,0)+dp(i1,j,1)dp(i,j,1)=dp(i1,j1,0)

但是还有一种特殊情况,那就是 i = 6 i=6 i=6 时,第 5 5 5 个点和第 6 6 6 个点之间不能连边,所以此时 d p ( i , j , 1 ) dp(i,j,1) dp(i,j,1) 不存在。

所以我们需要开一个数组判断一下某一个点是否是链的开头。

按着这个 dp,那么有 f ( m ) = ( n − m ) ! × d p ( 2 n , m ) f(m)=(n-m)!\times dp(2n,m) f(m)=(nm)!×dp(2n,m)

意思就是先把满足有 m m m ∣ P i − i ∣ = k |P_i-i|=k Pii=k 的方案数算出来,剩下的数随便排列。

代码如下:

#include<bits/stdc++.h>

#define N 2010
#define ll long long
#define mod 924844033

using namespace std;

int n,k,tot,a[N];
ll fac[N],dp[N<<1][N][2];
bool vis[N<<1];

int main()
{
	scanf("%d%d",&n,&k);
	fac[0]=1;
	for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod;
	for(int i=1;i<=k;i++)
	{
		for(int t=0;t<2;t++)
		{
			for(int j=i;j<=n;j+=k)
			{
				tot++;
				if(i!=j) vis[tot]=1;
			}
		}
	}
	dp[0][0][0]=1;
	for(int i=1;i<=(n<<1);i++)
	{
		for(int j=0;j<=n;j++)
		{
			dp[i][j][0]=(dp[i-1][j][0]+dp[i-1][j][1])%mod;
			if(vis[i]&&j) dp[i][j][1]=dp[i-1][j-1][0];
		}
	}
	ll ans=0;
	for(int i=0;i<=n;i++)
	{
		if(i&1) ans=(ans-(dp[n<<1][i][0]+dp[n<<1][i][1])*fac[n-i]%mod+mod)%mod;
		else ans=(ans+(dp[n<<1][i][0]+dp[n<<1][i][1])*fac[n-i]%mod)%mod;
	}
	printf("%lld\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值