【题解】[AGC005D] ~K Perm Counting

题意

如果一个排列 P P P 满足对于所有的 i i i 都有 ∣ P i − i ∣ ≠ k |P_i-i|\neq k Pii=k ,则称排列 P P P 是合法的。求有多少种合法的排列。

Solution:

本题的限制条件很像错排,但是区别在于并不是一一对应的。

考虑容斥。问题转化成了求满足其中 K K K 个条件的排列数。

考虑这样一个序列:1 1+k 1+2k ... 1+mk 。在二分图中是这样的:

请添加图片描述
考虑其中一条链。为了使结构统一,我们把原始排列拆分成 2 n 2n 2n 个点,这样做的好处是将题意限制转化成了 不能选择两条相邻的边 。(这样点和边形成了映射关系)。

d p [ i ] [ j ] [ 0 / 1 ] dp[i][j][0/1] dp[i][j][0/1] 表示处理到前 i i i 个点,其中满足 j j j 个条件,i->i-1 是否连边。状态转移方程为:

  1. d p [ i ] [ j ] [ 0 ] = d p [ i − 1 ] [ j ] [ 0 ] + d p [ i − 1 ] [ j ] [ 1 ] dp[i][j][0]=dp[i-1][j][0]+dp[i-1][j][1] dp[i][j][0]=dp[i1][j][0]+dp[i1][j][1]
  2. d p [ i ] [ j ] [ 1 ] = d p [ i − 1 ] [ j − 1 ] [ 0 ] ( j > = 1 ) dp[i][j][1]=dp[i-1][j-1][0](j>=1) dp[i][j][1]=dp[i1][j1][0](j>=1)

当然可以用 背包2k 条链合并。我们可以把 2k 条链合并在一起进行 d p dp dp ,对于链首的情况要特殊讨论。

时间复杂度 O ( n 2 ) O(n^2) O(n2)

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=924844033;
const int mx=4005;
int n,m,k,dp[mx][mx][2],a[mx];
ll res,fac[mx];
int main() {
	scanf("%d%d",&n,&k);
	fac[0]=1; for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod;
	for(int i=1;i<=k;i++) {
		for(int j=i;j<=n;j+=k) {
			a[++m]=(j==i);
		}
		for(int j=i;j<=n;j+=k) {
			a[++m]=(j==i);
		}
	}
	dp[0][0][0]=1;
	for(int i=1;i<=m;i++) {
		for(int j=0;j<=i;j++) {
			dp[i][j][0]=(dp[i-1][j][0]+dp[i-1][j][1])%mod;
			dp[i][j][1]=(a[i]==1||j==0)?0:dp[i-1][j-1][0];
		}
	}
	for(int i=0;i<=n;i++) {
		if(i&1) {
			res=(res-1ll*(dp[m][i][0]+dp[m][i][1])*fac[n-i]%mod)%mod;
		}
		else {
			res=(res+1ll*(dp[m][i][0]+dp[m][i][1])*fac[n-i]%mod)%mod;
		}
	}
	if(res<0) res+=mod;
	printf("%lld",res);
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这道题是一道典型的费用限制最短路题目,可以使用 Dijkstra 算法或者 SPFA 算法来解决。 具体思路如下: 1. 首先,我们需要读入输入数据。输入数据中包含了道路的数量、起点和终点,以及每条道路的起点、终点、长度和限制费用。 2. 接着,我们需要使用邻接表或邻接矩阵来存储图的信息。对于每条道路,我们可以将其起点和终点作为一个有向边的起点和终点,长度作为边权,限制费用作为边权的上界。 3. 然后,我们可以使用 Dijkstra 算法或 SPFA 算法求解从起点到终点的最短路径。在这个过程中,我们需要记录到每个点的最小费用和最小长度,以及更新每条边的最小费用和最小长度。 4. 最后,我们输出从起点到终点的最短路径长度即可。 需要注意的是,在使用 Dijkstra 算法或 SPFA 算法时,需要对每个点的最小费用和最小长度进行松弛操作。具体来说,当我们从一个点 u 经过一条边 (u,v) 到达另一个点 v 时,如果新的费用和长度比原来的小,则需要更新到达 v 的最小费用和最小长度,并将 v 加入到优先队列(Dijkstra 算法)或队列(SPFA 算法)中。 此外,还需要注意处理边权为 0 或负数的情况,以及处理无法到达终点的情况。 代码实现可以参考以下样例代码: ```c++ #include <cstdio> #include <cstring> #include <queue> #include <vector> using namespace std; const int MAXN = 1005, MAXM = 20005, INF = 0x3f3f3f3f; int n, m, s, t, cnt; int head[MAXN], dis[MAXN], vis[MAXN]; struct Edge { int v, w, c, nxt; } e[MAXM]; void addEdge(int u, int v, int w, int c) { e[++cnt].v = v, e[cnt].w = w, e[cnt].c = c, e[cnt].nxt = head[u], head[u] = cnt; } void dijkstra() { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); dis[s] = 0; q.push(make_pair(0, s)); while (!q.empty()) { int u = q.top().second; q.pop(); if (vis[u]) continue; vis[u] = 1; for (int i = head[u]; i != -1; i = e[i].nxt) { int v = e[i].v, w = e[i].w, c = e[i].c; if (dis[u] + w < dis[v] && c >= dis[u] + w) { dis[v] = dis[u] + w; q.push(make_pair(dis[v], v)); } } } } int main() { memset(head, -1, sizeof(head)); scanf("%d %d %d %d", &n, &m, &s, &t); for (int i = 1; i <= m; i++) { int u, v, w, c; scanf("%d %d %d %d", &u, &v, &w, &c); addEdge(u, v, w, c); addEdge(v, u, w, c); } dijkstra(); if (dis[t] == INF) printf("-1\n"); else printf("%d\n", dis[t]); return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值