题意
如果一个排列 P P P 满足对于所有的 i i i 都有 ∣ P i − i ∣ ≠ k |P_i-i|\neq k ∣Pi−i∣=k ,则称排列 P P P 是合法的。求有多少种合法的排列。
Solution:
本题的限制条件很像错排,但是区别在于并不是一一对应的。
考虑容斥。问题转化成了求满足其中 K K K 个条件的排列数。
考虑这样一个序列:1 1+k 1+2k ... 1+mk
。在二分图中是这样的:
考虑其中一条链。为了使结构统一,我们把原始排列拆分成 2 n 2n 2n 个点,这样做的好处是将题意限制转化成了 不能选择两条相邻的边 。(这样点和边形成了映射关系)。
设 d p [ i ] [ j ] [ 0 / 1 ] dp[i][j][0/1] dp[i][