既然APIO讲到了,就补一发计数题
题意是求有多少个n的排列,满足对于任意
i
,
陈老师说的简单DP不会啊…只好求助Manchery
另
官方也没给出DP的方法啊……
考虑一个二分图,
Li
向
Ri−k
和
Ri+k
连边,
f
就是大小为i的匹配方案数。观察发现这张图是由k条不想交的路径组成的,那么可以对于每条路径DP出
后来发现把这些链都连在一起,形成一条链,只要特判一下链接的部分再那样DP就可以了……
#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 4010
#define P 924844033
using namespace std;
int n,k,t;
int a[N];
int vis[N][2];
long long fac[N],g[N];
long long Ans;
long long f[N][N][2];
int main(){
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
for(int j=0;j<2;j++)
if(!vis[i][j]){
int x=i,y=j,len=0;
while(x<=n){
vis[x][y]=1;
len++;
x+=k; y^=1;
}
a[t+=len]=1;
}
f[1][0][0]=1;
for(int i=1;i<=t;i++)
for(int j=0;j<=n;j++){
f[i+1][j][0]=(f[i][j][0]+f[i][j][1])%P;
if(!a[i]) f[i+1][j+1][1]=f[i][j][0];
}
for(int i=1;i<=n;i++) g[i]=(f[t][i][0]+f[t][i][1])%P;
fac[0]=1;
for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%P;
Ans=fac[n];
for(int i=1,j=-1;i<=n;i++,j=-j) Ans=(Ans+P+j*g[i]*fac[n-i])%P;
printf("%lld\n",Ans);
return 0;
}