【XSY1580】Y队列 容斥

题目大意

  给你 n,r ,求第 n 个不能被表示为ab(2br)的数

   n2×1018,r62

题解

  我们考虑二分,求 m 的不能被表示为 ab 的数 f(m)

  我们先忽略 1

  我们钦定能被表示为a2,a3,a5 b 为质数的数,贡献为m21,m31,这样也会包含当 b 为合数时的情况,例如a4=(a2)2

  但我们算多了,例如 a3=b2=c6 ,所以我们要减掉 b 为两个不同的质数的积的情况,即m61,m101

  然后加上 b 为三个不同的质数的积的情况,减掉b为四个不同的质数的积的情况……

  我们发现 b=x 时容斥系数为 μ(x)

  当 b>62 mb=1 ,所以不用继续往下算了

  还有,开 n 次根号可以用pow,不过要传long double参数进去,不然就会炸精度。

  但是这样子还会tle,因为有30000组数据

  我们发现 f(x)x

  我们计算出 f(n) ,然后每次把 n 加上nf(n),可以很快得到答案

  时间复杂度: O(???)

  反正能过且常数巨大就对了

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef long double ld;
int p[100];
int u[100];
int b[100];
int mx[100];
int cnt;
ll n;
int k;
ll fp(ll a,ll b)
{
    ll s=1;
    while(b)
    {
        if(b&1)
            s=s*a;
        a=a*a;
        b>>=1;
    }
    return s;
}
ll calc(ll n,ll x)
{
    ll s=floor(ld(pow(ld(n),ld(1)/x)));
    return s;
}
ll count(ll x)
{
    int i;
    ll s=0;
    ll nw;
    for(i=1;i<=62;i++)
        if(mx[i]<=k&&u[i])
        {
            nw=calc(x,i)-1;
            if(!nw)
                break;
            s+=u[i]*nw;
        }
    return s;
}
void solve()
{
    scanf("%lld%d",&n,&k);
    ll t=n;
    ll s=count(t);
    while(1)
    {
        t+=n-s;
        s=count(t);
        if(s==n)
            break;
    }
    printf("%lld\n",t);
}
int main()
{
    int i,j;
    cnt=0;
    memset(b,0,sizeof b);
    u[1]=1;
    mx[1]=1;
    for(i=2;i<=62;i++)
    {
        if(!b[i])
        {
            p[++cnt]=i;
            mx[i]=i;
            u[i]=-1;
        }
        for(j=1;j<=cnt&&i*p[j]<=62;j++)
        {
            b[i*p[j]]=1;
            mx[i*p[j]]=mx[i];
            if(i%p[j]==0)
            {
                u[i*p[j]]=0;
                break;
            }
            u[i*p[j]]=-u[i];
        }
    }
    int t;
    scanf("%d",&t);
    while(t--)
        solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值