【AGC005F】Many Easy Problems FFT 容斥原理

题目大意

给你一棵树,有 n n n个点。还给你了一个整数 k k k

S S S为树上某些点的集合,定义 f ( S ) f(S) f(S)为最小的包含 S S S的联通子图的大小。

n n n个点选 k k k个点一共有 ( n k ) \binom{n}{k} (kn)中方案,请你求出所有方案的 f ( S ) f(S) f(S)的和 m o d    924844033 \mod 924844033 mod924844033

出题人觉得这样就太简单了,他决定让你求出所有 k = 1 … n k=1\ldots n k=1n的答案。

n ≤ 200000 n\leq 200000 n200000

题解

似乎对于每个 k k k没办法快速求出答案。

我们考虑一个点对所有答案的贡献。

一个点 x x x在这个联通子图内当且经当这 k k k个点不在以 x x x为根时 x x x的子树内。

那么贡献为 ( n k ) − ∑ ( a i k ) \binom{n}{k}-\sum \binom{a_i}{k} (kn)(kai),其中 a i a_i ai为以 x x x为根时各个子树的大小。可以发现,计算总的贡献时每条边两端的子树大小都会被计算一次。 ( n k ) \binom{n}{k} (kn)会被计算 n n n次。


b i = { n            ( i = n ) n u m i     ( i ≠ n ) b_i= \begin{cases} n~~~~~~~~~~(i=n)\\ num_i~~~(i\neq n) \end{cases} bi={n          (i=n)numi   (i̸=n)
其中 n u m i num_i numi为大小为 i i i的子树的个数
a n s k = ∑ i ≥ k b i ( i k ) = ∑ i ≥ k b i i ! ( i − k ) ! k ! = 1 k ! ∑ i ≥ k b i i ! × 1 ( i − k ) ! \begin{aligned} ans_k&=\sum_{i\geq k} b_i\binom{i}{k}\\ &=\sum_{i\geq k} b_i\frac{i!}{(i-k)!k!}\\ &=\frac 1{k!}\sum_{i\geq k}b_ii!\times \frac{1}{(i-k)!} \end{aligned} ansk=ikbi(ki)=ikbi(ik)!k!i!=k!1ikbii!×(ik)!1
  这可以转化成卷积的形式
c n − i = n u m i i ! d i = 1 i ! a i = ∑ j + k = i c j d k a n s i = a n − i i ! \begin{aligned} c_{n-i}&=num_ii!\\ d_{i}&=\frac{1}{i!}\\ a_i&=\sum_{j+k=i}c_jd_k\\ ans_i&=\frac{a_{n-i}}{i!} \end{aligned} cnidiaiansi=numii!=i!1=j+k=icjdk=i!ani
  时间复杂度: O ( n log ⁡ n ) O(n\log n) O(nlogn)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<list>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
const ll p=924844033;
const ll g=5;
ll fp(ll a,ll b)
{
	ll s=1;
	while(b)
	{
		if(b&1)
			s=s*a%p;
		a=a*a%p;
		b>>=1;
	}
	return s;
}
namespace ntt
{
	ll w1[1000010];
	ll w2[1000010];
	int rev[1000010];
	int n;
	void init()
	{
#ifdef DEBUG
		n=16;
#else
		n=524288;
#endif
		int i;
		for(i=1;i<=n;i<<=1)
		{
			w1[i]=fp(g,(p-1)/i);
			w2[i]=fp(w1[i],p-2);
		}
		rev[0]=0;
		for(i=1;i<n;i++)
			rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
	}
	void ntt(ll *a,int t)
	{
		int i,j,k;
		ll u,v,w,wn;
		for(i=0;i<n;i++)
			if(rev[i]<i)
				swap(a[i],a[rev[i]]);
		for(i=2;i<=n;i<<=1)
		{
			wn=(t==1?w1[i]:w2[i]);
			for(j=0;j<n;j+=i)
			{
				w=1;
				for(k=j;k<j+i/2;k++)
				{
					u=a[k];
					v=a[k+i/2]*w%p;
					a[k]=(u+v)%p;
					a[k+i/2]=(u-v)%p;
					w=w*wn%p;
				}
			}
		}
		if(t==-1)
		{
			ll inv=fp(n,p-2);
			for(i=0;i<n;i++)
				a[i]=a[i]*inv%p;
		}
	}
};
ll b[1000010];
ll c[1000010];
ll a[1000010];
ll inv[1000010];
ll fac[1000010];
ll ifac[1000010];
int s[1000010];
int n;
list<int> l[200010];
ll num[1000010];
void dfs(int x,int fa)
{
	s[x]=1;
	for(auto v:l[x])
		if(v!=fa)
		{
			dfs(v,x);
			s[x]+=s[v];
			num[s[v]]--;
			num[n-s[v]]--;
		}
}
int main()
{
#ifdef DEBUG
	freopen("b.in","r",stdin);
	freopen("b.out","w",stdout);
#endif
	scanf("%d",&n);
	int i,x,y;
	for(i=1;i<=n-1;i++)
	{
		scanf("%d%d",&x,&y);
		l[x].push_back(y);
		l[y].push_back(x);
	}
	inv[0]=inv[1]=fac[0]=fac[1]=ifac[0]=ifac[1]=1;
	for(i=2;i<=n;i++)
	{
		inv[i]=-(p/i)*inv[p%i]%p;
		fac[i]=fac[i-1]*i%p;
		ifac[i]=ifac[i-1]*inv[i]%p;
	}
	dfs(1,0);
	num[n]=n;
	for(i=0;i<=n;i++)
		b[i]=num[n-i]*fac[n-i]%p;
	for(i=0;i<=n;i++)
		c[i]=ifac[i];
	ntt::init();
	ntt::ntt(b,1);
	ntt::ntt(c,1);
	for(i=0;i<ntt::n;i++)
		a[i]=b[i]*c[i]%p;
	ntt::ntt(a,-1);
	for(i=1;i<=n;i++)
	{
		ll ans=a[n-i]*ifac[i]%p;
		ans=(ans+p)%p;
		printf("%lld\n",ans);
	}
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值