【BZOJ1015】【JSOI2008】星球大战 并查集

题目大意

  给你一张 n 个点m条边的无向图,有 q 次操作,每次删掉一个点以及和这个点相邻的边,求最开始和每次删完点后的连通块个数。

  qn400000,m200000

题解

  我们可以用并查集维护连通块个数,可惜并查集不支持删除操作。

  但是这道题没有强制在线,所以可以先删完所有点后再一个个加回来。

  加边的时候维护连通块个数。

  时间复杂度: O(nα(n))

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
struct graph
{
    int v[1000010];
    int t[1000010];
    int h[1000010];
    int n;
    graph()
    {
        n=0;
        memset(h,0,sizeof h);
    }
    void add(int x,int y)
    {
        n++;
        v[n]=y;
        t[n]=h[x];
        h[x]=n;
    }
};
graph g;
int f[1000010];
int b[1000010];
int x[1000010];
int y[1000010];
int c[1000010];
int s[1000010];
int r[1000010];
int find(int x)
{
    return f[x]==x?x:f[x]=find(f[x]);
}
int merge(int x,int y)
{
    x=find(x);
    y=find(y);
    if(x==y)
        return 0;
    if(r[x]>r[y])
        swap(x,y);
    f[x]=y;
    if(r[x]==r[y])
        r[y]++;
    return 1;
}
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    int i;
    for(i=1;i<=n;i++)
    {
        b[i]=1;
        f[i]=i;
        r[i]=1;
    }
    for(i=1;i<=m;i++)
    {
        scanf("%d%d",&x[i],&y[i]);
        x[i]++;
        y[i]++;
        g.add(x[i],y[i]);
        g.add(y[i],x[i]);
    }
    int q;
    scanf("%d",&q);
    int ans=n;
    for(i=1;i<=q;i++)
    {
        scanf("%d",&c[i]);
        c[i]++;
        b[c[i]]=0;
        ans--;
    }
    int j;
    for(i=1;i<=n;i++)
        if(b[i])
            for(j=g.h[i];j;j=g.t[j])
                if(b[g.v[j]])
                    ans-=merge(i,g.v[j]);
    s[q]=ans;
    for(i=q;i>=1;i--)
    {
        b[c[i]]=1;
        ans++;
            for(j=g.h[c[i]];j;j=g.t[j])
                if(b[g.v[j]])
                    ans-=merge(c[i],g.v[j]);
        s[i-1]=ans;
    }
    for(i=0;i<=q;i++)
        printf("%d\n",s[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值