Learning:多项式(二)(NTT)

如果还不会FFT的话,请先学习完FFT之后再来学习NTT。

FFT可以帮助我们快速地将多项式从系数表达变换成点值表达。但由于涉及浮点数运算,我们需要对一些数取模时,不能一边计算一边取模,所以有可能会爆炸。而且我们有时候也会因此丢失精度,导致结果错误。但是NTT是利用一些特殊的模数,基于数论来进行变换,过程中所使用的都是整数,所以不存在这些问题。

对于gcd(a,n)=1的整数,满足a^r\equiv1\pmod{m}的最小整数r,称为an的阶。

原根

m是正整数,a是整数,若am的阶等于\phi(m),则称a为模m的一个原根。

NTT

事实上,在模素数P的意义下中,我们可以把g^\frac{P-1}{n}看做是和FFT中e^{\frac{2\pi i}{n}}是等价的(g是模P的原根),所以我们就可以把FFT稍微修改一下即可。素数P我们通常使用费马素数998244353,它的原根是3。常用的模数还有1004535809,469762049等。注意:在模意义下的除一个数,应乘上它的逆元。求逆元可以通过费马小定理用快速幂来求。

代码(注意,这里的 g是原根,gi是原根的逆元):

void NTT(int *a,int limit,int type){
	for(int i=0;i<limit;i++)
		if(i<r[i])
			swap(a[i],a[r[i]]);
	for(int mid=1;mid<limit;mid<<=1){
		int wn=qpow(type==1?g:gi,(mod-1)/(mid<<1));
		for(int i=0;i<limit;i+=(mid<<1)){
			int w=1;
			for(int j=0;j<mid;j++,w=1ll*w*wn%mod){
				int x=a[i+j],y=1ll*w*a[i+j+mid]%mod;
				a[i+j]=Add(x,y);
				a[i+j+mid]=Minus(x,y);
			}
		}
	}
	if(type==-1)
		for(int i=0;i<limit;i++)
			a[i]=1ll*a[i]*inv[limit]%mod;
	return;
}

 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值