调和级数是一个非常著名的级数,对于调和级数我们有一个近似的求和公式:
∑
i
=
1
n
1
i
=
ln
(
n
+
1
)
+
γ
(
γ
为
欧
拉
常
数
,
γ
=
l
i
m
n
→
∞
∫
1
n
1
⌊
x
⌋
−
1
x
d
x
约
等
于
0.57721566490153286060651209
,
)
\sum_{i=1}^n\frac{1}{i}=\ln(n+1)+\gamma(\gamma为欧拉常数,\gamma=lim_{n\rightarrow\infty}\int_{1}^{n}\frac{1}{\lfloor x\rfloor}-\frac{1}{x}dx约等于0.57721566490153286060651209,)
∑i=1ni1=ln(n+1)+γ(γ为欧拉常数,γ=limn→∞∫1n⌊x⌋1−x1dx约等于0.57721566490153286060651209,)。
推导过程:
∑
i
=
1
n
1
i
=
∑
i
=
1
n
∫
i
i
+
1
1
⌊
x
⌋
d
x
\sum_{i=1}^n\frac{1}{i}=\sum_{i=1}^n\int_i^{i+1}\frac{1}{\lfloor x\rfloor}dx
i=1∑ni1=i=1∑n∫ii+1⌊x⌋1dx
=
∫
1
n
+
1
1
x
+
1
⌊
x
⌋
−
1
x
d
x
=\int_1^{n+1}\frac{1}{x}+\frac{1}{\lfloor x\rfloor}-\frac{1}{x}dx
=∫1n+1x1+⌊x⌋1−x1dx
=
∫
1
n
+
1
1
x
d
x
+
∫
1
n
+
1
1
⌊
x
⌋
−
1
x
d
x
=\int_1^{n+1}\frac{1}{x}dx+\int_1^{n+1}\frac{1}{\lfloor x\rfloor}-\frac{1}{x}dx
=∫1n+1x1dx+∫1n+1⌊x⌋1−x1dx
≈
ln
(
n
+
1
)
+
γ
\approx\ln (n+1)+\gamma
≈ln(n+1)+γ
调和级数近似求和公式推导
最新推荐文章于 2021-08-20 16:59:05 发布