调和级数近似求和公式推导

调和级数是一个非常著名的级数,对于调和级数我们有一个近似的求和公式:
∑ i = 1 n 1 i = ln ⁡ ( n + 1 ) + γ ( γ 为 欧 拉 常 数 , γ = l i m n → ∞ ∫ 1 n 1 ⌊ x ⌋ − 1 x d x 约 等 于 0.57721566490153286060651209 , ) \sum_{i=1}^n\frac{1}{i}=\ln(n+1)+\gamma(\gamma为欧拉常数,\gamma=lim_{n\rightarrow\infty}\int_{1}^{n}\frac{1}{\lfloor x\rfloor}-\frac{1}{x}dx约等于0.57721566490153286060651209,) i=1ni1=ln(n+1)+γ(γ,γ=limn1nx1x1dx0.57721566490153286060651209,)
推导过程:
∑ i = 1 n 1 i = ∑ i = 1 n ∫ i i + 1 1 ⌊ x ⌋ d x \sum_{i=1}^n\frac{1}{i}=\sum_{i=1}^n\int_i^{i+1}\frac{1}{\lfloor x\rfloor}dx i=1ni1=i=1nii+1x1dx
= ∫ 1 n + 1 1 x + 1 ⌊ x ⌋ − 1 x d x =\int_1^{n+1}\frac{1}{x}+\frac{1}{\lfloor x\rfloor}-\frac{1}{x}dx =1n+1x1+x1x1dx
= ∫ 1 n + 1 1 x d x + ∫ 1 n + 1 1 ⌊ x ⌋ − 1 x d x =\int_1^{n+1}\frac{1}{x}dx+\int_1^{n+1}\frac{1}{\lfloor x\rfloor}-\frac{1}{x}dx =1n+1x1dx+1n+1x1x1dx
≈ ln ⁡ ( n + 1 ) + γ \approx\ln (n+1)+\gamma ln(n+1)+γ

### 关于级数求和问题的解题思路 对于南京邮电大学 NOJ 上的级数求和问题 (PROB1014),其核心在于找到满足条件 \( S(n) \geq K \) 的最小正整数 \( n \)[^1]。其中,\( S(n) = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} \)调和级数的部分和。 #### 数学背景 调和级数是一个发散级数,随着 \( n \to \infty \),部分和 \( S(n) \) 趋向无穷大。因此,给定任意实数 \( K \),总能找到一个最小的 \( n \) 满足 \( S(n) \geq K \)[^1]。 --- ### 示例代码实现 以下是基于 Python 实现的一个简单版本: ```python def find_min_n(k): n = 1 Sn = 0.0 # 初始化为浮点数以支持精确计算 while Sn <= k: Sn += 1 / n n += 1 return n - 1 # 返回最后一个使得Sn>k的n值 # 输入处理 try: k = float(input().strip()) result = find_min_n(k) print(result) except ValueError: print("输入错误,请确保输入的是一个有效的数值") ``` 上述代码通过循环逐步累加调和级数项直到超过目标值 \( K \),并返回对应的最小 \( n \) 值。 --- ### 性能优化考虑 尽管该算法能够解决问题,但在某些极端情况下可能会显得效率较低。例如当 \( K \) 非常大时,循环次数会显著增加。可以尝试利用近似公式来加速计算过程。已知调和级数可以通过欧拉-马歇罗尼常数 (\( \gamma \approx 0.5772156649 \)) 近似表达为: \[ H(n) \approx \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + O\left(\frac{1}{n^4}\right). \] 这种方法适用于快速估算较大的 \( n \),但需要注意精度误差可能带来的影响。 --- ### 测试案例 为了验证程序正确性,可设计如下测试数据集: | **K** | **预期输出 N** | |-------|----------------| | 0 | 1 | | 1 | 2 | | 2 | 4 | | 3 | 11 | 运行以上代码即可得到相应结果并与理论值对比确认无误。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值