【AT2166】Rotate 3x3

题目链接
这道题其实难度不大
首先将存在一列不合法的直接舍去
to[i] t o [ i ] 表示第 i i 列原本在矩阵中的位置
我们会发现,如果i to[i] t o [ i ] 不是同为奇数或同为偶数时是不可能将初始矩阵变为给定的矩阵。 先把这个判掉。
假设这个矩阵的列已经按顺序排好了,那么我们就会发现一个神奇的东西,那就是我们可以将隔着一列的两列同时颠倒!方法如下:
我们把每一列当做一个字母,设小写字母颠倒之后是大写字母,
于是我们设 abcde a b c d e 为原矩阵的一部分
然后就到了我们构造的时候啦!
abcdeCBAdeCBEDaebcDaebAdCaBcDe a b c _ d e → C B A d e _ → C B E _ D a → e b c D a _ → e b A _ d C → a B c D e
这样我们就构造出了一种方案使得这部分的第二列和第四列颠倒了。
那第一列和第三列呢?
基于上面的方案,我们有:
aBcDeadCbecDAbecBadeAbCde a B c D _ e → a d C _ b e → c D A b _ e → c B a _ d e → A b C d e
大功告成!
第三列和第五列同理啦
所以如果这个矩阵的每一列都已经排好了,那剩下的就直接看看如果奇数列或偶数列共有奇数个列是颠倒的话,那就是输出no就好了。因为只需要判奇偶,所以下面写的都是异或1。
我们会发现如果我们要交换两个奇数列,我们只需要将偶数列的颠倒数异或1就好了,偶数列反之。
于是我们枚举1到n,然后将 i i to[i]交换,直到 i==to[i] i == t o [ i ] 为止。
然后就搞定啦!
如果有误在评论区吼一声哦!
代码(不要介意我用来卡常的fread,本地要测的话把读入改一改就好了)

#include<cstdio>
#include<algorithm>
using namespace std;
int n,t[2],a[5][100010],to[100010];
char buffer[10000010],*hed;
inline char Getchar(){
    return *hed++;
}
inline int rd(){
    register int x=0;
    char c;
    do c=Getchar();
    while(!isdigit(c));
    do{
        x=(x<<1)+(x<<3)+(c^48);
        c=Getchar();
    }while(isdigit(c));
    return x;
}
inline int abs(int x){
    return x>=0?x:-x;
}
int main(){
    int len=fread(buffer,1,10000000,stdin);
    hed=buffer;
    n=rd();
    for(int i=1;i<=3;i++)
        for(int j=1;j<=n;j++)
            a[i][j]=rd();
    for(register int i=1;i<=n;i++){
        to[i]=a[2][i]/3+1;
        if(!((a[1][i]-a[2][i]==-1&&a[2][i]-a[3][i]==-1&&a[1][i]%3==1)||(a[1][i]-a[2][i]==1&&a[2][i]-a[3][i]==1&&!(a[1][i]%3)))||(abs(i-to[i])&1)){
            puts("No");
            return 0;
        }
        t[i&1]^=(a[1][i]>a[2][i]);
    }
    for(register int i=1;i<=n;i++){
        while(to[i]!=i){
            t[i&1^1]^=1;
            swap(to[i],to[to[i]]);
        }
    }
    puts(t[0]||t[1]?"No":"Yes");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值