题目链接
这道题其实难度不大
首先将存在一列不合法的直接舍去
用
to[i]
t
o
[
i
]
表示第
i
i
列原本在矩阵中的位置
我们会发现,如果和
to[i]
t
o
[
i
]
不是同为奇数或同为偶数时是不可能将初始矩阵变为给定的矩阵。 先把这个判掉。
假设这个矩阵的列已经按顺序排好了,那么我们就会发现一个神奇的东西,那就是我们可以将隔着一列的两列同时颠倒!方法如下:
我们把每一列当做一个字母,设小写字母颠倒之后是大写字母,
于是我们设
abcde
a
b
c
d
e
为原矩阵的一部分
然后就到了我们构造的时候啦!
abc–––de→CBAde––––→CBE–––––Da→ebcDa––––→ebA––––dC→aBcDe
a
b
c
_
d
e
→
C
B
A
d
e
_
→
C
B
E
_
D
a
→
e
b
c
D
a
_
→
e
b
A
_
d
C
→
a
B
c
D
e
这样我们就构造出了一种方案使得这部分的第二列和第四列颠倒了。
那第一列和第三列呢?
基于上面的方案,我们有:
aBcD–––––e→adC––––be→cDAb–––––e→cBa––––de→AbCde
a
B
c
D
_
e
→
a
d
C
_
b
e
→
c
D
A
b
_
e
→
c
B
a
_
d
e
→
A
b
C
d
e
大功告成!
第三列和第五列同理啦
所以如果这个矩阵的每一列都已经排好了,那剩下的就直接看看如果奇数列或偶数列共有奇数个列是颠倒的话,那就是输出no就好了。因为只需要判奇偶,所以下面写的都是异或1。
我们会发现如果我们要交换两个奇数列,我们只需要将偶数列的颠倒数异或1就好了,偶数列反之。
于是我们枚举1到n,然后将
i
i
和交换,直到
i==to[i]
i
==
t
o
[
i
]
为止。
然后就搞定啦!
如果有误在评论区吼一声哦!
代码(不要介意我用来卡常的fread,本地要测的话把读入改一改就好了)
#include<cstdio>
#include<algorithm>
using namespace std;
int n,t[2],a[5][100010],to[100010];
char buffer[10000010],*hed;
inline char Getchar(){
return *hed++;
}
inline int rd(){
register int x=0;
char c;
do c=Getchar();
while(!isdigit(c));
do{
x=(x<<1)+(x<<3)+(c^48);
c=Getchar();
}while(isdigit(c));
return x;
}
inline int abs(int x){
return x>=0?x:-x;
}
int main(){
int len=fread(buffer,1,10000000,stdin);
hed=buffer;
n=rd();
for(int i=1;i<=3;i++)
for(int j=1;j<=n;j++)
a[i][j]=rd();
for(register int i=1;i<=n;i++){
to[i]=a[2][i]/3+1;
if(!((a[1][i]-a[2][i]==-1&&a[2][i]-a[3][i]==-1&&a[1][i]%3==1)||(a[1][i]-a[2][i]==1&&a[2][i]-a[3][i]==1&&!(a[1][i]%3)))||(abs(i-to[i])&1)){
puts("No");
return 0;
}
t[i&1]^=(a[1][i]>a[2][i]);
}
for(register int i=1;i<=n;i++){
while(to[i]!=i){
t[i&1^1]^=1;
swap(to[i],to[to[i]]);
}
}
puts(t[0]||t[1]?"No":"Yes");
return 0;
}