JAVA 二维数组(含二维数组典型题)

二维数组

就是一个由行和列组成的一个表格而已,矩阵Matrix。

 

我们在这个矩阵中访问元素的话,是根据元素的行角标和列角标所确定的。

1、那么对于二维数组是如何存储的呢?

无论是二维数组,还是多维数组,它们本身就是一个一维数组;尤其对于二维数组而言,无非就是一个一维数组,只不过该一维数组中的每一个元素是另一个一维数组罢了!

int[][] matrix=new int[m][n];

内存中一共有m+1个一维数组 

class Test01{
    public static void main(String[] args){
        int[][] matrix={
            {1,2,3,4},
            {5,6,7,8},
            {8,7,6,5},
            {4,3,2,1}
        };
        //matrix.length 表示的就是最外层那个一维数组的长度 行数
        //matrix[i] 表示的是最外层那个一维数组当中角标i的那个元素 只不过这个元素也是一个一维数组
        //matrix[i].length 表示的是这个一维数组元素的长度(当前行的长度)
        //matrix[i][j] 表示的就是这个一维数组元素中角标j的那个元素
        for(int i=0;i<matrix.length;i++){
            for(int j=0;j<matrix[i].length;j++){
                System.out.print(matrix[i][j]+" ");
            }
            System.out.println();
        } 
    }
}

 

既然以上二维数组的遍历(打印)已经出现,那么现在我们再来讲一讲如何创建二维数组:

1.int[][]  matrix=new int[3][4];//创建一个3行4列的二维数组,元素默认都是0

创建个指定元素的二维数组(3种方式都可以)

2.int[][] matrix=new int[][]{

    {1,2,3,4} ,

    {5,6,7,8} ,

    {9,10,11,12}

};

___________________

3.int[][] matrix={

    {1,2,3,4} ,

    {5,6,7,8} ,

    {9,10,11,12}

};

____________________

锯齿矩阵/二维数组

int[][] matrix={

    {1,2,3,4} ,

    {5,6,7} ,

    {8,9},

    {10}

};

注意:特别的,如果一个二维数组的行和列相等的话,也称之为是方阵。矩阵一定是二维数组,二维数组不一定是矩阵。

二维数组典例

import java.util.*;
class Demo05_09{
    public static void main(String[] args){
        /*
            (0,0) (0,1) (0,2) (0,3)
            (1,0) (1,1) (1,2) (1,3)
            (2,0) (2,1) (2,2) (2,3)
            累加行的时候 行不动 列动
            累加列的时候 列不动 行动
        */
        //1.输入一个3*4的矩阵
        Scanner scanner=new Scanner(System.in);
        System.out.println("Enter numbers:");
        double[][] matrix=new double[3][4];
        for(int i=0;i<matrix.length;i++){
            for(int j=0;j<matrix[i].length;j++){
                matrix[i][j]=scanner.nextDouble();
            }
        }
        //2.打印每列的和
        for(int col=0;col<matrix[0].length;col++){
            System.out.println(sumColumn(matrix,col));
        }
    }
    public static double sumColumn(double[][] m,int col){
        double sum=0;
        for(int row=0;row<m.length;row++){
            sum+=m[row][col];
        }
        return sum;
    }
}

 

class Demo05_10{
    public static void main(String[] args){
        /*
            (0,0) (0,1) (0,2) 
            (1,0) (1,1) (1,2) 
            (2,0) (2,1) (2,2)
            主对角线上的元素 行列角标是相等的
        */
        int[][] m={
            {1, 2, 3, 4},
            {5, 6, 7, 8},
            {9, 10,11,12},
            {13,14,15,16}
        };
        //主对角线
        int sum=0;
        for(int i=0;i<m.length;i++){
            sum+=m[i][i];
        }
        System.out.println(sum);
        //副对角线
        int subsum=0;
        for(int i=0;i<m.length;i++){
            subsum+=m[i][m.length-1-i];
        }
        System.out.println(subsum);
        /*
        for(int i=0;i<m.length;i++){
            for(int j=0;j<m[i].length;j++){
                if(i==j){
                    sum+=m[i][j];
                }
            }
        }
        */
    }
}

 

class Demo05_11{
    public static void main(String[] args){
        //m*n n*p m*p 矩阵相乘 前者的列 必须等于 后者的行
        /*
        1 2 3        1 2    1*1+2*3+3*5   1*2+2*4+3*6
                ×    3 4  = 
        4 5 6        5 6    4*1+5*3+6*5   4*2+5*4+6*6
        对于数学上的一些运算公式 如果直接通过看计算流程还是比较麻烦的
        此时推荐使用已知公式计算!
        */
        double[][] A={ //m*p
            {1,2,3},
            {4,5,6},
            {7,8,9}
        };
        double[][] B={ //p*n
            {0,2.0,4.0},
            {1,4.5,2.2},
            {1.1,4.3,5.2}
        };
        double[][] C=new double[A.length][B[0].length];//m*n
        for(int i=0;i<C.length;i++){
            for(int j=0;j<C[i].length;j++){
                double sum=0;
                for(int k=0;k<B.length;k++){
                    sum+=A[i][k]*B[k][j];
                }
                C[i][j]=sum;
                System.out.print(C[i][j]+" ");
            }
            System.out.println();
        }
    }
}

 

import java.util.*;
class Demo05_12{
    public static void main(String[] args){
        //1.输入方针的尺寸 创建方阵
        Scanner scanner=new Scanner(System.in);
        System.out.print("Enter size:");
        int size=scanner.nextInt();
        int[][] m=new int[size][size];
        //2.随机的给方阵中填入0或1
        Random random=new Random();
        for(int i=0;i<size;i++){
            for(int j=0;j<size;j++){
                m[i][j]=random.nextInt(2);
                System.out.print(m[i][j]+" ");
            }
            System.out.println();
        }
        //3.让行,列,对角线累加 sum==0 sum==size 表示全相等
        checkRow(m);
        checkCol(m);
        checkDiagonal(m);
        checkSubDiagonal(m);
    }
    public static void checkSubDiagonal(int[][] m){
        int sum=0;
        for(int i=0;i<m.length;i++){
            sum+=m[i][m.length-1-i];
        }
        if(sum==m.length||sum==0){
            System.out.printf("副主对角线全相等且是%d\n",sum==0?0:1);
        }
    }
    public static void checkDiagonal(int[][] m){
        int sum=0;
        for(int i=0;i<m.length;i++){
            sum+=m[i][i];
        }
        if(sum==m.length||sum==0){
            System.out.printf("主对角线全相等且是%d\n",sum==0?0:1);
        }
    }
    public static void checkRow(int[][] m){
        for(int i=0;i<m.length;i++){
            int sum=0;
            for(int j=0;j<m[i].length;j++){
                sum+=m[i][j];
            }
            if(sum==m.length||sum==0){
                System.out.printf("第%d行全相等且是%d\n",i+1,sum==0?0:1);
            }
        }
    }
    public static void checkCol(int[][] m){
        for(int j=0;j<m.length;j++){
            int sum=0;
            for(int i=0;i<m.length;i++){
                sum+=m[i][j];
            }
            if(sum==m.length||sum==0){
                System.out.printf("第%d列全相等且是%d\n",j+1,sum==0?0:1);
            }
        }
    }
}

连续相等

 

对于这中连续相等的问题(本来有8个方向,但有一半会重复,所以用四个方向来考虑):首先先画图分析、找出每个方向上满足(角标不越界)的最大角标。例如这道题:

import java.util.*;
class Demo05_13{
    public static void main(String[] args){
        Scanner scanner=new Scanner(System.in);
        System.out.print("Enter row ,col:");
        int row=scanner.nextInt();
        int col=scanner.nextInt();
        int[][] m=new int[row][col];
        for(int i=0;i<row;i++){
            for(int j=0;j<col;j++){
                m[i][j]=scanner.nextInt();
            }
        }
        System.out.println(isConsecutiveFour(m));
    }
    public static boolean isConsecutiveFour(int[][] m){
        for(int i=0;i<m.length;i++){
            for(int j=0;j<m[i].length;j++){
                //向右
                if(j<=m[i].length-4){
                    boolean flag=true;
                    for(int c=j+1;c<=j+3;c++){
                        if(m[i][j]!=m[i][c]){
                            flag=false;
                            break;
                        }
                    }
                    if(flag){
                        return true;
                    }
                }
                //向下
                if(i<=m.length-4){
                    boolean flag=true;
                    for(int r=i+1;r<=i+3;r++){
                        if(m[i][j]!=m[r][j]){
                            flag=false;
                            break;
                        }
                    }
                    if(flag){
                        return true;
                    }
                }
                //向右下
                if(i<=m.length-4&&j<=m[0].length-4){
                    boolean flag=true;
                    for(int r=i+1,c=j+1;r<=i+3;r++,c++){
                        if(m[i][j]!=m[r][c]){
                            flag=false;
                            break;
                        }
                    }
                    if(flag){
                        return true;
                    }
                }
                //向右上
                if(i>=3&&j<=m[0].length-4){
                    boolean flag=true;
                    for(int r=i-1,c=j+1;c<=j+3;r--,c++){
                        if(m[i][j]!=m[r][c]){
                            flag=false;
                            break;
                        }
                    }
                    if(flag){
                        return true;
                    }
                }
            }
        }
        return false;//四个方向都没有连续的
    }
}

 

 

  • 1
    点赞
  • 0
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

Java程序设计》课程实验指导书程序代码(答案)(实验二),个人原创,仅供参考与交流。 希望多多交流,共同进步! 实验二 Java语言基础 一、实验目的: 熟悉Java基本语法,基本数据类型,各种运算符及表达式的使用,掌握运算符优先级,熟悉使用Java的选择语句,循环语句。 二、实验内容: 1.编写Java Application程序,输出1900年到2000年之间的所有润年。(闰年的判断条件:能被4整除且不能被100整除,或能被400整除); 2.编写Java Appet 程序打印 “水仙花” 数 (它的个、十、百位数字的立方的和等于该数本身,如:153=1^3+5^3+3^3) 3. 编写Java Application程序,分别用do-while和for循环计算1+1/2!+1/3!+1/4!...的前20项和 三、实验要求: 1. 正确使用Java语言的选择语句,循环语句; 2. 调试程序、编译,运行后得到正确的结果 3.写出实验报告。要求记录编译和执行Java程序当中的系统错误信息提成示,并给出解决办法。 四、实验步骤: 1.编写主类; 2.在static public void main(String[ ] args)方法中加入实现要求功能的代码,主要步骤如下: (第一)从1900到2000循环,按照闰年的判断条件是则输出1900年到2000年之间的所有润年。 (第二)编写Java Applet, 在public void paint(Graphics g)方法中加入实现要求功能的代码, 主要步骤是:从100到1000循环,判断每个数是否符合水仙花数的特点,是则输出之。 3.编译运行程序,观察输出结果是否正确。 五、自做实验 1. 输出100以内的所有素数。 提示: 逐个判断小于a的每个正整数x,第二重循环针对x,判断其是否是质数。 2.将所输入之正整数,以二、八、十六进制表示出来。 提示: 可写三个方法分别计算输出二、八、十六进制表示。
©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值