二叉树结构c++代码实现(只涉及增加删除查找)

#include <iostream>
using namespace std;

template<class T>
class Node
{
public:
    T m_Value;
    Node* left;
    Node* right;

public:
    Node() : m_Value(T()), left(nullptr), right(nullptr) {};
    Node(const T& value) :m_Value(value), left(nullptr), right(nullptr) {};
};

//插入节点
template<class T>
void insertHelper(Node<T>* node, const T& value)
{
    Node<T>* newNode = new Node<T>(value);
    //根节点为空,新节点即为根节点
    if (node == nullptr)
    {
        node = newNode;
        return;
    }

    if (value < node->m_Value)
    {
        insertHelper(node->left, value);
    }
    else if (value > node->m_Value)
    {
        insertHelper(node->right, value);
    }
    else
    {
        cout << "节点已存在。" << endl;
        return;
    }
}

//搜索节点
template<class T>
void searchNode(Node<T>* node, const T& value)
{
    if (node == nullptr)
    {
        cout << "未找到。" << endl;
        return;
    }
    if (value < node->m_Value)
    {
        searchNode(node->left, value);
    }
    else if (value > node->m_Value)
    {
        searchNode(node->right, value);
    }
    else
    {
        cout << "find it:" << node->m_Value << endl;
    }
}

//删除节点
template<class T>
void deleteNode(Node<T>* tree, const T& value)
{
    if (tree == nullptr)
    {
        cout << "未找到要删除的节点。" << endl;
        return;
    }
    //定义三个节点,待删节点,待删节点的父节点,根节点的临时节点
    //要定义一个根节点的临时节点是因为我们可能会对根节点进行操作,这样会改变结构
    //当别人要进行操作的时候会发现树已经变了
    Node<T>* node = NULL, * parent = NULL, * temp = tree;//这里的temp其实就是根节点
    while (temp != nullptr)
    {
        if (temp->m_Value == value)
        {
            node = temp;
            break;
        }
        //当前节点为父节点,向其子节点查找
        parent = temp;
        if (value < temp->m_Value)
        {
            temp = temp->left;
        }
        else
        {
            temp = temp->right;
        }
    }

    //现在node就是找到的那个节点,但可能没找到,初始定义没变 为空
    if (node == nullptr)
    {
        cout << "not find." << endl;
        return;
    }

    //找到不为空的node节点了。分三种情况
    //1. 该节点为叶子节点,即没有左右子节点,这个时候直接删掉
    if (node->left == nullptr && node->right == nullptr)
    {
        if (parent == nullptr) //这种情况就是只有一个根节点
        {
            delete node;
            cout << "删除成功。" << endl;
            return;
        }
        if (parent->left == node)
        {
            parent->left = nullptr;
        }
        else
        {
            parent->right = nullptr;
        }
        delete node;
        cout << "删除成功。" << endl;
        return;
    }
    //2.该节点只有左子节点
    //这是需要定义一个待删节点的子节点
    Node<T>* subNode = NULL;
    if (node->right == NULL)
    {
        subNode = node->left;
        if (parent != NULL)
        {
            if (parent->left == node)
            {
                parent->left = subNode;
            }
            else
            {
                parent->right = subNode;
            }
            delete node;
            cout << "删除成功。" << endl;
            return;
        }
        else //父节点为空,也就是说要删除的是根节点
        {
            delete node;
            tree = subNode;
            cout << "删除成功。" << endl;
            return;
        }
    }
    //3. 该节点只有右子节点
    else if (node->left == NULL)
    {
        subNode = node->right;
        if (parent != NULL)
        {
            if (parent->left == node)
            {
                parent->left = subNode;
            }
            else
            {
                parent->right = subNode;
            }
        }
        delete node;
        cout << "删除成功。" << endl;
        return;
    }
    //4.该节点左右子节点都有
    if (node->left != nullptr && node->right != nullptr)
    {
        //查找前驱节点,以及前驱结点的父节点
        Node<int>* replacer = node, * rpcParent = parent;
        //temp用不到了,在这里拿来查找前驱节点用
        temp = node->left;
        while (temp != nullptr)
        {
            rpcParent = replacer;
            replacer = temp;
            temp = temp->right;
        }
        //循环后,此时replacer是待删除节点node的前驱
        //rpcParent是前驱的父节点,temp为空不需要了
        //删除操作
        T value = replacer->m_Value;
        deleteNode(rpcParent, replacer->m_Value);
        node->m_Value = value;
        //cout << "删除成功。" << endl;
        return;

    }
}

//前序遍历
template<class T>
void preOrderTravel(Node<T>* node)
{
    if (node != NULL)
    {
        cout << node->m_Value << " ";
        preOrderTravel(node->left);
        preOrderTravel(node->right);
    }

}

//中序遍历
template<class T>
void inOrderTravel(Node<T>* node)
{
    if (node != NULL)
    {
        inOrderTravel(node->left);
        cout << node->m_Value << " ";
        inOrderTravel(node->right);
    }
}

//后序遍历
template<class T>
void postOrderTravel(Node<T>* node)
{
    if (node != NULL)
    {
        postOrderTravel(node->left);
        postOrderTravel(node->right);
        cout << node->m_Value << " ";
    }

}

void test01()
{
    //BinaryTree<int> tree;
    //定义一个根节点也就是一棵树
    Node<int>* root = new Node<int>(10);
    Node<int>* node5 = new Node<int>(5);
    Node<int>* node16 = new Node<int>(16);
    Node<int>* node2 = new Node<int>(2);
    Node<int>* node7 = new Node<int>(7);
    Node<int>* node1 = new Node<int>(1);
    Node<int>* node4 = new Node<int>(4);
    Node<int>* node6 = new Node<int>(6);
    Node<int>* node9 = new Node<int>(9);

    root->left = node5; root->right = node16;
    node5->left = node2; node5->right = node7;
    node2->left = node1; node2->right = node4;
    node7->left = node6; node7->right = node9;

    //树的实际结构
    //          10
    //      5        16
    //   2     7    
    // 1   4  6  9
    
    cout << "前序遍历:" << endl;
    preOrderTravel(root);
    cout << endl;

    cout << "中序遍历:" << endl;
    inOrderTravel(root);
    cout << endl;

    cout << "后序遍历:" << endl;
    postOrderTravel(root);
    cout << endl;

    //searchNode(root, 2);

    deleteNode(root, 5);

    cout << "删除节点5之后的中序遍历:" << endl;
    inOrderTravel(root);
    cout << endl;

}

int main()
{
    test01();
    system("pause");
    return 0;
}

结合教材和视频课整理的,删除部分可以简化很多,主要还是看自己的逻辑思路

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值