描述
题解
这里分为两种情况:
其一:从[1, n]的正常顺序的最大子段和;
其二:从开头取一部分,结尾取一部分,中间舍去,那么中间的一定是最小子段和,然后所有数据的和减去最小子段和即可。
最后从两种情况中选取相对较大的情况。
代码
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const int MAXN = 5e4 + 10;
ll A[MAXN];
ll All[MAXN], Start[MAXN];
ll MaxSubStringOne(ll *A, int n)
{
int i;
Start[n - 1] = A[n - 1];
All[n - 1] = A[n - 1];
for(i = n - 2; i >= 0; i--) // 根据题意,从后向前遍历,反之亦可。
{
Start[i] = max(A[i], (A[i] + Start[i + 1]));
All[i] = max(Start[i], All[i + 1]);
}
return All[0]; // All[0] 中存放结果
}
ll MaxSubStringTwo(ll *A, int n, ll sum)
{
int i;
Start[n - 1] = A[n - 1];
All[n - 1] = A[n - 1];
for(i = n - 2; i >= 0; i--) // 根据题意,从后向前遍历,反之亦可。
{
Start[i] = min(A[i], (A[i] + Start[i + 1]));
All[i] = min(Start[i], All[i + 1]);
}
return sum - All[0]; // All[0] 中存放结果
}
int main(int argc, const char * argv[])
{
int N;
cin >> N;
ll sum = 0;
for (int i = 0; i < N; i++)
{
scanf("%lld", A + i);
sum += A[i];
}
ll ans_1 = MaxSubStringOne(A, N);
ll ans_2 = MaxSubStringTwo(A, N, sum);
cout << (ans_1 > ans_2 ? ans_1 : ans_2) << '\n';
return 0;
}