ElasticSearch倒排索引

一、ElasticSearch基本概念

       Elastucsearch是基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基 于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布, 是一种流行的企业级搜索引擎。Elasticsearch用于云计算中,能够达到实时搜索,稳定,可靠,快速, 安装使用方便。官方客户端在Java、.NET(C#)、PHP、Python、Apache Groovy、Ruby和许多其他 语言中都是可用的。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是 Apache Solr,也是基于Lucene 演示:京东,淘宝 。

    Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。

    重要特性:

  1. 分布式的实时文件存储,每个字段都被索引并可被搜索
  2. 实时分析的分布式搜索引擎
  3. 可以扩展到上百台服务器,处理PB及结构或非结构化数据
二、倒排索引

倒排索引的概念是基于MySql这样的正向索引而言。

1.正向索引

  正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。

    如果根据·id查询,直接走索引,查询速度非常快

                                                                                           Id                                title
                              1                      IPhone16promax
                              2                        IWatch
                              3                   IPhone16promax充电器

    基于title做模糊查询,只能是逐行扫描,历程如下:

  1. 用户搜索数据,条件是title符合"%手机%"
  2. 逐行获取数据,比如是id为1的数据
  3. 判断数据中的title是否符合用户的搜索条件
  4. 如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量的增加,其查询效率也会越来越低。当数量达到数百万时,就是一场灾难。

2. 倒排索引
  • 文档(Document):用来搜素的数据,其中的每一条数据是一个文档。如:一个网页、一个商品信息。
  • 词条(Term):对文档数据或用户搜素,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条。

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在的文档id,位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引 

如图:正向索引

            id                 title
              1      IPhone16promax
              2          IPhoneWatch
              3       IPhone16promax充电器

 倒排索引

                         词条                文档id
                   IPhone                 1,2,3
                IPhone16promax                 1,3
                Watch                   2
              充电器                   3

倒排索引的搜索流程如下:

  1. 用户输入条件为“IPhoneWatch”进行搜素
  2. 对用户输入内容分词,得到词条:"IPhone","Watch"
  3. 拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
  4. 拿着文档的id到正向索引中查找具体文档。

虽然要先查询倒排索引,再查询正向索引,但无论是词条、还是文档id都建立了索引,查询速度非常快,无序全表扫描。

3.正向和倒排
  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。

正向索引:

  • 优点:
  1.  可以给多个字段创建索引
  2. 根据索引字段搜索、排序速度非常快
  • 缺点
  1. 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引:

  • 优点:
  1. 根据词条搜索,模糊搜索时,速度非常快
  • 缺点:
  1. 只能给词条创建索引,而不是字段
  2. 无法根据字段做排序

总结:倒排索引和正向索引的区别主要在于索引方式:正向索引按照文档ID有序存储每个文档,二倒排索引按照词条将文档分类存储。

具体实现

   连接mysql的实体类

package com.ly.springboot_es_hotel.pojo;

import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
@Data
@TableName("tb_hotel")
public class Hotel {
    @TableId(type = IdType.INPUT)
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String longitude;//经度
    private String latitude;//纬度
    private String pic;
}

 关于es实体类

package com.ly.springboot_es_hotel.pojo;

import lombok.Data;
import lombok.NoArgsConstructor;
@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private  String pic;

    public HotelDoc(Hotel hotel){
        this.id= hotel.getId();
        this.name= hotel.getName();
        this.address= hotel.getAddress();
        this.price= hotel.getPrice();
        this.score= hotel.getScore();
        this.brand= hotel.getBrand();
        this.city= hotel.getCity();
        this.starName= hotel.getStarName();
        this.business= hotel.getBusiness();
        this.location= hotel.getLatitude()+","+ hotel.getLongitude();
        this.pic= hotel.getPic();
    }
}

做查询准备的一些属性

package com.ly.springboot_es_hotel.pojo;

import lombok.Data;

import java.util.List;


@Data
public class PageResult {
    private Long total;
    private List<HotelDoc> hotels;

    public PageResult() {
    }

    public PageResult(Long total, List<HotelDoc> hotels) {
        this.total = total;
        this.hotels = hotels;
    }
}

 

package com.ly.springboot_es_hotel.pojo;

import lombok.Data;

@Data
public class RequestParams {
    private String key;//搜索关键字
    private Integer page;//当前页
    private Integer size;//每页记录数
    private String sortBy;//排序字段

    //组合查询服务属性
    private String brand;
    private String city;
    private String starName;
    private Integer minPrice;
    private  Integer maxPrice;

}

业务层查询条件方式

package com.ly.springboot_es_hotel.service;

import com.alibaba.fastjson.JSON;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.ly.springboot_es_hotel.mapper.HotelMapper;
import com.ly.springboot_es_hotel.pojo.Hotel;
import com.ly.springboot_es_hotel.pojo.HotelDoc;
import com.ly.springboot_es_hotel.pojo.PageResult;
import com.ly.springboot_es_hotel.pojo.RequestParams;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.web.bind.annotation.RequestParam;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

@Service
public class HotelServiceImp extends ServiceImpl<HotelMapper, Hotel> implements IHotelService {
    @Autowired
    private RestHighLevelClient restHighLevelClient;
    @Override
    public PageResult search(RequestParams params) {
//        try {
//            //准备请求
//            SearchRequest request=new SearchRequest("hotels");
//            //准备请求参数
//            //查询条件
//            String key=params.getKey();
//            if (key==null||"".equals(key)){
//                request.source().query(QueryBuilders.matchAllQuery());
//            }else {
//                request.source().query(QueryBuilders.matchQuery("all",key));
//            }
//            //分页
//            int page=params.getPage();
//            int size = params.getSize();
//            request.source().from((page-1)*size).size(size);
//            //发送请求
//            SearchResponse response =restHighLevelClient.search(request, RequestOptions.DEFAULT);
//         return    handleResponse(response);
//        } catch (IOException e) {
//            throw new RuntimeException("搜索数据失败",e);
//        }
/*************************条件查询**************************************/
//准备Request
        try {
            SearchRequest request=new SearchRequest("hotels");
            //1.准备Boolean查询
            BoolQueryBuilder boolQuery=QueryBuilders.boolQuery();
            //关键字搜索,match查询,放到must中
            String key=params.getKey();
            if(key==null||"".equals(key)){
                //为空所查询的
                request.source().query(QueryBuilders.matchAllQuery());
            }else {
                request.source().query(QueryBuilders.matchQuery("all",key));
            }
            //品牌
            String brand =params.getBrand();
            if (brand!=null){
                boolQuery.filter(QueryBuilders.termQuery("brand",brand));
            }
            //城市
            String city=params.getCity();
            if (city!=null){
                boolQuery.filter(QueryBuilders.termQuery("city",city));
            }
            //星级
            String starName=params.getStarName();
            if (starName!=null){
                boolQuery.filter(QueryBuilders.termQuery("starName",starName));
            }
            //价格范围
            Integer minPrice=params.getMinPrice();
            Integer maxPrice=params.getMaxPrice();
            if (maxPrice!=null&&minPrice!=null){
                boolQuery.filter(QueryBuilders.rangeQuery("price").gte(minPrice).lte(maxPrice));
            }
            //设置查询条件
            request.source().query(boolQuery);
            //分页
            int page=params.getPage();
            int size=params.getSize();
            request.source().from((page-1)*size).size(size);
            //发送请求
            SearchResponse response =restHighLevelClient.search(request, RequestOptions.DEFAULT);
            //解析响应结果
            PageResult pageResult = handleResponse(response);
            return pageResult;
        } catch (IOException e) {
            throw new RuntimeException("搜索数据失败",e);
        }
    }

    //处理结果集
    private PageResult handleResponse(SearchResponse response){
        SearchHits searchHits=response.getHits();
        //总条数
        long total = searchHits.getTotalHits().value;
        //获取文档数据
        SearchHit[] hits = searchHits.getHits();
        //遍历
        List<HotelDoc> hotels=new ArrayList<>(hits.length);
        for (SearchHit hit : hits) {
            //获取source
            String json = hit.getSourceAsString();
            //反序列化
            HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
            //放入集合
            hotels.add(hotelDoc);
            System.out.println(hotelDoc);
        }
        return new PageResult(total,hotels);

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值