文章目录
1 不谈数学公式,说明傅里叶变换的前世今生
傅里叶变换需要面对大量数学公式罗列,入门级选手望而生畏,上来就看一堆公式容易陷到公式内部不能自拔,即便有一定数学功底的同学也不能很好的的理解傅里叶变换的真实含义,不能学以致用。如何脱离数学公式解释傅里叶变换?有什么意义及方法?又有什么应用?
作为零基础小白,整理自己的学习过程,从各种大佬的文章搬运整合。
1.1 什么是傅里叶变换?
任何周期函数都可以看所是不同振幅,不同正弦波的叠加。——傅里叶
1807年39岁的数学家傅里叶在法国科学会上提交的论文提出以上极具争议的论断,引起同时期两名注明数学家拉普拉斯和拉格朗日的关注。
58岁的拉普拉斯赞成其观点,71岁的拉格朗日反对。拉格朗日的反对理由是:正弦曲线无法组合成一个带有棱角的信号。屈于拉格朗日的威望,此论文在拉格朗日死后15年才得以正式发表。
那么谁是对的?
后世科学家证明,拉格朗日和傅里叶两个人都是对的。
有限数量的正弦曲线的确无法组合成一个带有棱角的信号,从这个角度看拉格朗日是对的,然而,无限数量的正弦曲线的组合从能量的角度可以非常无限逼近带有棱角的信号,逼近到不存在能量差别,基于此傅里叶是对的。
因此后人对傅里叶该论文中的论断进行扩展:满足一定条件的的函数可以表示为三角函数或者他们积分的的线性组合。
如何组合?这就需要傅里叶变换。
一定条件是什么?这个问题由数学家负责研究,这里不讨论,而且对于大多数使用傅里叶变换的工程师来说,也不必关注。
从电参量测量分析角度更通俗的描述:任何周期信号可以分解为直流分量和一组不同幅值、频率、相位的正弦波,分解方法就是傅里叶变换。
而且,这些正弦波的频率符合一个规律:是某个频率的整数倍。这个频率被称为基波频率,其他频率被称为谐波频率。如果谐波的频率是基波频率的N倍,就称为N次谐波。直流分量的频率为零,是基波频率的零倍,也可称零次谐波。
1.2 为什么要有傅里叶变换?
这是描述信号的的需要。
信号需要用越简单的方法描述越好。
信号特征可以用信号特征值进行描述。这个信号特征值,是指可以定量描述一个波形的某种特征的数据。若想要全面描述一个信号,可能需要多个特征值。比如,正弦波可以用幅值和频率两个特征值全面描述;方波可以用幅值、频率和占空比三个特征值全面描述(单个周期信号不考虑相位)。
基于上述特征值,我们就能够通过示波器观察实时波形,这种以时间为参照观察世界的方法称为时域分析法。这也是我们大多数人习惯使用的分析方法,通过波形了解信号。but,除了常规信号外,很多时候给你了你波形,你也看不出什么有用的东西来o(╥﹏╥)o。
如上图,仅仅能看出是一个类似正弦波的波形,幅值在一定范围内规律变化,那怎么记录这个波形呢?尤其是量化记录波形!
很难。
时域分析既然很难,那有没有更简单的方法分析信号。我们来换一个角度,事实上,对上述波形其实就是一个50Hz的正弦波叠加一个40Hz的正弦波,两者的波幅不同,40Hz的波幅越大,波动幅度就越大吗,而波动频率的就是两者的的差值10Hz(三相异步电动机叠频温升试验时的电流波形)。
这样显然就容易理解多了,从频率角度理解信号,以频率轴为坐标轴分析信号的方法也即频域分析法。频域并不是真实的,而是一个数学构造。对于一个信号来说,信号强度随时间的变化规律就是时域特性,信号是由哪些单一频率的信号合成的就是频域特性。
时域分析和频域分析是对信号的两个观察面。所以时域信号经过傅里叶分析后,变为不同的正弦波叠加,再去分析正弦波的频率,就可以将一个信号的时域表示变换成频域表示。这样有些在时域上很难看出特征的信号,在频域上其实很容易看出特征,更容易量化分析信号。时域的表示更直观形象,频域分析更简练,剖析更深刻方便。二者互相联系,相辅相成。而贯穿时域分析和频域分析的方法之一,就是傅里叶分析。
傅里叶变换是一种信号分析方法,让我们对信号的构成和特点进行深入的、定量的研究。把信号通过频谱的方式(包括幅值谱想、相位谱和功率谱)进行准确、定量的描述。
傅立叶变换提供给我们这种换一个角度看问题的工具,看问题的角度不同了,问题也许就迎刃而解!
1.3 为什么是正弦波而不是三角波或其他波?
是因为傅里叶选的呀!
仅仅是这样吗?
对,仅仅是这样。
其实如果张三能证明,任意信号可以分解为方波组合,那么这个方法完全可以叫张三变换;李四能证明,任意信号能够分解为三角波组合,那么这个方法也可以成为李四变换。就这么有尿性。
其实,傅里叶变换就是一种信号的分析方法,分解信号的方法是无穷的,但目的就是为了能够把问题简单化,正弦波就做到了这一点,正是巧妙的地方。
正弦波有个其它任何波形(恒定的直流波形除外)所不具备的特点:正弦波输入至任何线性系统,出来的还是正弦波,改变的仅仅是幅值和相位,称之为“正弦波保真度”。正弦波输入至线性系统,不会产生新的频率成分(非线性系统如变频器,就会产生新的频率成分,称为谐波)。用单位幅值的不同频率的正弦波输入至某线性系统,记录其输出正弦波的幅值和频率的关系,就得到该系统的幅频特性,记录输出正弦波的相位和频率的关系,就得到该系统的相频特性。也就是说正弦信号是系统的特征向量。正余弦波恰好是很多线性时不变系统的特征向量。正是这种只有正余弦波才具备的性质,我们才没有选择方波和三角波。
线性系统是自动控制研究的主要对象,线性系统具备一个特点,多个正弦波叠加后输入至一个系统,输出是所有正弦波独立输入时对应输出的叠加。也就是说,我们只要研究正弦波的输入输出关系,就可以知道该系统对任意输入信号的响应。
2 如何求傅里叶变换 TODO
要想理解傅里叶变换,需要有一定耐心,也需要一定的高等数学基础,基础的是级数变换,傅里叶级数变换是傅里叶变换的基础公式。
2.1 傅里叶变换的分类
根据原信号的不容类型,我们可以把傅里叶变换分为以下四类:
编号 | 信号 | 变换 |
---|---|---|
1 | 非周期性连续信号 | 傅里叶变换(Fourier Transform) |
2 | 周期性连续信号 | 傅里叶级数(Fourier Series) |
3 | 非周期性离散信号 | 离散时域傅里叶变换(Discrete Time Fourier Transform) |
4 | 周期性离散信号 | 离散傅里叶变换(Discrete Fourier Transform) |
以下为四种原信号图例: