2020-WWW)Relation Adversarial Network for Low Resource Knowledge Graph Completion

(2020-WWW)Relation Adversarial Network for Low Resource Knowledge Graph Completion

基于关系对抗网络的低资源知识图谱补全

知乎详解

摘要

在这里插入图片描述

老生常谈小样本,为了解决这个问题提出了:加权关系对抗网络。利用对抗网络来从高资源关系中学习到不同但相关的低资源关系。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

关键:知识图谱补全、对抗转移学习、链路预测、关系提取

一、介绍

长尾效应以及低资源

关系抽取 :远程监督方法,通过实体从句子中抽取关系效果不好。

对抗转移学习 :转移学习通过在高资源的区域学习知识,然后应用于低资源区域。

关系对抗网络

负转移

我们为了解决低资源的问题,提出**Weighted Relation Adversarial Network (wRAN)**框架,分为三个部分:实例编码器、对抗关系自适应、权重关系自适应

主要贡献

  • 第一个提出对抗转移学习来解决低资源的知识图谱补全问题,这样可以很容易的集成链路预测和关系提取
  • 我们提出了RAN(relation adversarial network)关系对抗网络。利用关系鉴别器来区分不同关系的样本,并学习转移从元关系到目标关系。
  • 我们提出了一种relation-gated mechanism (理解不来)
  • 取得最好的结果
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

二、相关工作

知识图谱补全

对抗域适应(Adversarial Domain Adaptation)

三、方法模型(methodolgy)

3.1问题定义

我们提出关系适应,将自适应多个源关系对应到一个或多个目标关系。这与标准的域适配相似但有区别。

一组源关系: S = { R s i } i = 1 r s S=\left\{R_{s}^{i}\right\}_{i=1}^{r_{s}} S={Rsi}i=1rs,每一个源关系 R s i = { x j s , y j s } j = 1 n s R_{s}^{i}=\left\{x_{j}^{s}, y_{j}^{s}\right\}_{j=1}^{n_{s}} Rsi={xjs,yjs}j=1ns

目标关系: R t = { x j t } j = 1 n t R_{t}=\left\{x_{j}^{t}\right\}_{j=1}^{n_{t}} Rt={xjt}j=1nt

3.2 框架总览

在这里插入图片描述
在这里插入图片描述

Instance Encoder(输入编码):利用神经网络将实例语义编码为向量,采用CNN
在这里插入图片描述

在这里插入图片描述

Adversarial Relation Adaptation(对抗关系适应):我们遵循标准的对抗转移学习框架,该框架寻找可以区分具有不同关系分布的样本的关系鉴别器。
在这里插入图片描述
Weighted Relation Adaptation(权重关系适应):我们提出了一种关系门机制,以自动地识别不相关的源关系/样本和低权重,以解决负面转移的问题。
在这里插入图片描述

3.3 Instance Encoder
image-20210707161503926

输入:一个句子,

min ⁡ F s , C L s = E x , y ∼ p s ( x , y ) L ( C ( F s ( x ; θ ) ) , y ) \min _{F_{s}, C} \mathbb{L}_{s}=\mathbb{E}_{x, y \sim p_{s}(x, y)} L\left(C\left(F_{s}(x ; \theta)\right), y\right) minFs,CLs=Ex,yps(x,y)L(C(Fs(x;θ)),y)

3.4 Adversarial Relation Adaptation

遵循标准的对抗迁移学习框架,采用wRAN

min ⁡ F s , F t max ⁡ D L ( D , F s , F t ) = E x ∼ p s ( x ) [ log ⁡ D ( F S ( x ) ) ] + E x ∼ p t ( x ) [ 1 − log ⁡ D ( F t ( x ) ) ] \begin{aligned} \min _{F_{s}, F_{t}} \max _{D} \mathbb{L}\left(D, F_{s}, F_{t}\right)=& \mathbb{E}_{x \sim p_{s}(x)}\left[\log D\left(F_{S}(x)\right)\right]+\\ & \mathbb{E}_{x \sim p_{t}(x)}\left[1-\log D\left(F_{t}(x)\right)\right] \end{aligned} Fs,FtminDmaxL(D,Fs,Ft)=Exps(x)[logD(FS(x))]+Expt(x)[1logD(Ft(x))]

3.5 Weighted Relation Adaptation

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.6 Initialization and Training

四、实验

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

https://zhuanlan.zhihu.com/p/322384368

https://zhuanlan.zhihu.com/p/51499968

https://zhuanlan.zhihu.com/p/73947456

https://github.com/jindongwang/transferlearning/blob/master/doc/%E8%BF%81%E7%A7%BB%E5%AD%A6%E4%B9%A0%E7%AE%80%E4%BB%8B.md

补充介绍

迁移学习:域适配问题

域适配 Domain adaptation

数据:源域数据、目标域数据

源域数据是丰富并且有标记的,而目标域数据是充足但是没有标记的,但是源域和目标域的特征空间和标记空间相同。虽然源域和目标域的特征空间相同,但是两者的特征分布却不同(两者的样本并不在特征空间的相同位置)

域适配问题最主要的就是如何减少source和target不同分布之间的差异,域适配包括无监督域适配和半监督域适配,前者的target是完全没有label的,后者的target有部分的label,但是数量非常的少。

这里主要介绍基于深度学习的方法,在我们已知finetuning之后,其实很容易想到,将在有标签的域A上训练好的模型用在无标签或者少量标签的域B上,中间的操作只需要改变输入,但是这种方式就会由于域A和域B数据分布不同导致效果并不一定会非常好,如果有方式能够减少A和B的差异,那就可以用同一个模型来跑A和B的数据。

常见模型:

  • DeCAF

  • DDC

  • DAN

  • JAN

Domain-Adversarial Training of Neural Networks(DANN)

在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fadeGR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值