Spark-RDD介绍(详细)

RDD是Spark中的核心概念,它是只读、分区的记录集合,具备容错特性。RDD通过5大特性实现高效计算:分区信息、分片计算函数、依赖关系、Partitioner和最佳位置列表。当数据丢失时,Spark利用依赖关系重算丢失分区,而Partitioner则用于指导数据在Reducer间的分布。
摘要由CSDN通过智能技术生成

RDD:即弹性分布式数据集,它具备像MapReduce等数据流模型的容错特性,能在并行计算中高效地进行数据共享进而提升计算性能。RDD中提供了一些转换操作,在转换过程中记录“血统”关系,但在RDD中并不会存储真正的数据,只是对数据和操作的描述。
RDD是只读的、分区记录的集合

RDD有5大特性,分别如下:
(1)一系列的分区信息。
RDD源码对应的方法是:

protected def getPartitions:Array[Partition]

(2)由一个函数计算每一个分片。
Spark中的RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。\

def compute(split:Partition,context:TaskContext):Iterator[T]

(3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值