你总共有 n 枚硬币,你需要将它们摆成一个阶梯形状,第 k 行就必须正好有 k 枚硬币。
给定一个数字 n,找出可形成完整阶梯行的总行数。
n 是一个非负整数,并且在32位有符号整型的范围内。
示例 1:
n = 5
硬币可排列成以下几行:
¤
¤ ¤
¤ ¤
因为第三行不完整,所以返回2.
示例 2:
n = 8
硬币可排列成以下几行:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
因为第四行不完整,所以返回3.
题解:
-
把问题转化为数学问题,则可以改成前x项相加的和小于等于n,则可以得到不等式:
x*(x+1)-2*n<=0,求解满足式子的最大整数(这种方法直接解一个二次方程,得到结果再强制转换就好) -
利用二分法进行求解
二分法:
时间和内存消耗为:
代码为:
class Solution {
public int arrangeCoins(int n) {
int left=1,right=n/2+1;
int mid=(left+right+1)>>>1;
long n1=n;
while(left<right){
if((double)mid*(mid+1)>2*n1){
right=mid-1;
}else {
left=mid;
}
mid=(left+right+1)>>>1;
}
return mid;
}
}