Matplotlib Day4 Text Show

本文详细介绍了使用Matplotlib进行数据可视化时如何操作Figure和Axes的文本,包括设置标题、标签、注释等。还讨论了Tick的定制,如刻度和标签的位置与格式。最后讲解了图例的创建与自定义,包括位置、字体大小、边框和背景颜色,以及图例标题和条目的设置。
摘要由CSDN通过智能技术生成

1. Figure & Axes context

Pyplot API(自动创建绘图对象):

  • text
  • title
  • figtext
  • suptitle
  • xlabel
  • ylabel
  • annotate

object-oriented API(自动创建绘图对象):

  • text
  • set_title
  • text
  • suptitle
  • set_xlabel
  • set_ylabel
  • annotate

API Usage:

#此方法返回作为创建的文本实例

pyplot API:matplotlib.pyplot.text(x, y, s, fontdict=None, **kwargs)
OO API:Axes.text(self, x, y, s, fontdict=None, **kwargs)

 

#该命令是用来设置axes的标题。

pyplot API:matplotlib.pyplot.title(label, fontdict=None, loc=None, pad=None, *, y=None, **kwargs)
OO API:Axes.set_title(self, label, fontdict=None, loc=None, pad=None, *, y=None, **kwargs)
 

#此方法返回作为创建的文本实例的文本

pyplot API:matplotlib.pyplot.figtext(x, y, s, fontdict=None, **kwargs)
OO API:text(self, x, y, s, fontdict=None,**kwargs)

 

#此方法返回作为创建的title实例

pyplot API:matplotlib.pyplot.suptitle(t, **kwargs)
OO API:suptitle(self, t, **kwargs)

 

# xlabel和ylabel 

pyplot API:matplotlib.pyplot.xlabel(xlabel, fontdict=None, labelpad=None, *, loc=None, **kwargs)
     matplotlib.pyplot.ylabel(ylabel, fontdict=None, labelpad=None,*, loc=None, **kwargs)
OO API:  Axes.set_xlabel(self, xlabel, fontdict=None, labelpad=None, *, loc=None, **kwargs)
     Axes.set_ylabel(self, ylabel, fontdict=None, labelpad=None,*, loc=None, **kwargs)

 

#annotate

pyplot API:matplotlib.pyplot.annotate(text, xy, *args,**kwargs)
OO API:Axes.annotate(self, text, xy, *args,**kwargs)

 

#font set

some of the font set:

{cmmi10 DejaVu Sans Mono DejaVu Sans STIXSizeFourSym DejaVu Sans Display DejaVu Serif STIXGeneral STIXNonUnicode STIXSizeFourSym STIXSizeThreeSym STIXGeneral cmr10 STIXNonUnicode cmsy10 DejaVu Sans STIXSizeFiveSym DejaVu Sans STIXSizeThreeSym DejaVu Serif Display DejaVu Sans cmex10...}

 

#MathText

e.g.: plt.text(1, -0.6, r'$\sum_{i=0}^\infty x_i$', fontsize=20)     plt.text(0.6, 0.6, r'$\mathcal{A}\mathrm{sin}(2 \omega t)$', fontsize=20)

 

2. Tick 

设置tick(刻度)和ticklabel(刻度标签)也是可视化中经常需要操作的步骤,matplotlib既提供了自动生成刻度和刻度标签的模式(默认状态),同时也提供了许多让使用者灵活设置的方式。

axis的set_ticks,--手动设置标签位置

axis的set_ticklabels --手动设置标签格式

Tick Locators 刻度位置

Formatters 刻度标签

 

3. Legend

术语说明:

  • legend entry(图例条目)

图例有一个或多个legend entries组成。一个entry由一个key和一个label组成。

  • legend key(图例键)

每个 legend label左面的colored/patterned marker(彩色/图案标记)

  • legend label(图例标签)

描述由key来表示的handle的文本

  • legend handle(图例句柄)

用于在图例中生成适当图例条目的原始对象

1.设置图列位置

plt.legend(loc=‘upper center’) 等同于plt.legend(loc=9)

2.设置图例字体大小

fontsize : int or float or {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}

3.设置图例边框及背景

plt.legend(loc=‘best’,frameon=False) #去掉图例边框
plt.legend(loc=‘best’,edgecolor=‘blue’) #设置图例边框颜色
plt.legend(loc=‘best’,facecolor=‘blue’) #设置图例背景颜色,若无边框,参数无效

4.设置图例标题

legend = plt.legend([“CH”, “US”], title=‘China VS Us’)

5.设置图例名字及对应关系

legend = plt.legend([p1, p2], [“CH”, “US”])

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值