Matplotlib Day5 Color &Style

本文介绍了如何使用matplotlib库批量修改全局样式,包括切换预定义样式和自定义样式文件。同时,探讨了颜色的色相、亮度和饱和度概念,并展示了如何通过RGB、十六进制和预设颜色创建图表。此外,还讲解了使用colormap设置颜色组的方法。
摘要由CSDN通过智能技术生成

1.Style introduce

matplotlib库提供了批量修改全局样式.

  • plt.style()
  • xx.mplstyle file
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np

plt.style.use('default')
plt.plot([1,2,3,4],[2,3,4,5])

plt.style.use('ggplot')
plt.plot([1,2,3,4],[2,3,4,5])

#all style
print(plt.style.available)
'''['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-dark-palette', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblind10']'''

#mplstyle XX.mplstyle
'''axes.titlesize : 24
axes.labelsize : 20
lines.linewidth : 3
lines.markersize : 10
xtick.labelsize : 16
ytick.labelsize : 16'''

plt.style.use('../xx.mplstyle')
plt.plot([1,2,3,4],[2,3,4,5])

plt.style.use(['dark_background', 'file/presentation.mplstyle'])
  • rcparams
  • mpl.rc
mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['lines.linestyle'] = '--'
plt.plot([1,2,3,4],[2,3,4,5])

mpl.rc('lines', linewidth=4, linestyle='-.')
plt.plot([1,2,3,4],[2,3,4,5])

2.Color 

色相、亮度和饱和度.

色相: 没有明显的顺序性、一般不用来表达数据量的高低,而是用来表达数据列的类别。
明度和饱和度: 在视觉上很容易区分出优先级的高低、被用作表达顺序或者表达数据量视觉通道。

  • RGB或RGBA
# 颜色用[0,1]之间的浮点数表示,四个分量按顺序分别为(red, green, blue, alpha),其中alpha透明度可省略
plt.plot([1,2,3],[4,5,6],color=(0.1, 0.2, 0.5))
plt.plot([4,5,6],[1,2,3],color=(0.1, 0.2, 0.5, 0.5))

# 用十六进制颜色码表示,同样最后两位表示透明度,可省略
plt.plot([1,2,3],[4,5,6],color='#0f0f0f')
plt.plot([4,5,6],[1,2,3],color='#0f0f0f80')

# 当只有一个位于[0,1]的值时,表示灰度色阶
plt.plot([1,2,3],[4,5,6],color='0.5')

# matplotlib有八个基本颜色,可以用单字符串来表示,分别是'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w',对应的是blue, green, red, cyan, magenta, yellow, black, and white的英文缩写
plt.plot([1,2,3],[4,5,6],color='m')

# matplotlib提供了颜色对照表,可供查询颜色对应的名称
plt.plot([1,2,3],[4,5,6],color='tan')
  • colormap设置一组颜色
x = np.random.randn(50)
y = np.random.randn(50)
plt.scatter(x,y,c=x,cmap='RdPu')

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值