概率期望小结论

对于一个概率 p p p,设它能提供的期望值为命中此概率的次数。那么保持这个概率直至命中此概率的期望值为 1 p \frac{1}{p} p1

证明:
∑ i = 1 ∞ ( 1 − p ) i − 1 ∗ p ∗ i = p ∑ i = 1 ∞ ( 1 − p ) i − 1 ∗ i \begin{aligned} \sum\limits_{i = 1}^{\infty} (1 - p) ^ {i - 1} * p * i &= p \sum\limits_{i = 1}^{\infty} (1 - p) ^ {i - 1} * i \\ \end{aligned} i=1(1p)i1pi=pi=1(1p)i1i

先省略前面的 p p p, 看后面的部分。

∑ i = 1 ∞ ( 1 − p ) i − 1 ∗ i = 1 + 2 ( 1 − p ) + 3 ( 1 − p ) 2 + 4 ( 1 − p ) 3 + ⋯ + ∞ ( 1 − p ) ∞ − 1 = ( 1 + ( 1 − p ) + ( 1 − p ) 2 + ⋯ + ( 1 − p ) ∞ − 1 ) + ( ( 1 − p ) + 2 ( 1 − p ) 2 + ⋯ + ( ∞ − 1 ) ( 1 − p ) ∞ − 1 ) \begin{aligned} \sum\limits_{i = 1}^{\infty} (1 - p) ^ {i - 1} * i &= 1 + 2(1 - p) + 3(1 - p) ^ 2 + 4 (1 - p) ^ 3 + \dots + \infty (1 - p) ^ {\infty - 1} \\ &= (1 + (1 - p) + (1 - p) ^ 2 + \dots + (1 - p) ^ {\infty - 1}) + ((1 - p) + 2(1 - p) ^ 2 + \dots + (\infty - 1) (1 - p) ^ {\infty - 1}) \end{aligned} i=1(1p)i1i=1+2(1p)+3(1p)2+4(1p)3++(1p)1=(1+(1p)+(1p)2++(1p)1)+((1p)+2(1p)2++(1)(1p)1)
A = 1 + ( 1 − p ) + ( 1 − p ) 2 + ⋯ + ( 1 − p ) ∞ − 1 A = 1 + (1 - p) + (1 - p) ^ 2 + \dots + (1 - p) ^ {\infty - 1} A=1+(1p)+(1p)2++(1p)1 B = ( 1 − p ) + 2 ( 1 − p ) 2 + ⋯ + ( ∞ − 1 ) ( 1 − p ) ∞ − 1 B = (1 - p) + 2(1 - p) ^ 2 + \dots + (\infty - 1) (1 - p) ^ {\infty - 1} B=(1p)+2(1p)2++(1)(1p)1

A = 1 + ( 1 − p ) + ( 1 − p ) 2 + ⋯ + ( 1 − p ) ∞ − 1 ( 1 − p ) A = ( 1 − p ) + ( 1 − p ) 2 + ⋯ + ( 1 − p ) ∞ − 1 + ( 1 − p ) ∞ ( 1 − p ) A − A = ( 1 − p ) ∞ − 1 − p A = ( 1 − p ) ∞ − 1 A = ( 1 − p ) ∞ − 1 − p \begin{aligned} A &= 1 + (1 - p) + (1 - p) ^ 2 + \dots + (1 - p) ^ {\infty - 1}\\ (1 - p) A &= (1 - p) + (1 - p) ^ 2 + \dots + (1 - p) ^ {\infty - 1} + (1 - p) ^ {\infty}\\ (1 - p) A - A &= (1 - p) ^ {\infty} - 1\\ -p A&= (1 - p) ^ {\infty} - 1\\ A &= \frac{(1 - p) ^ {\infty} - 1}{-p} \end{aligned} A(1p)A(1p)AApAA=1+(1p)+(1p)2++(1p)1=(1p)+(1p)2++(1p)1+(1p)=(1p)1=(1p)1=p(1p)1

∵ 0 ≤ p ≤ 1 \because0 \le p \le 1 0p1

∴ ( 1 − p ) ∞ ≈ 0 \therefore (1 - p) ^ {\infty} \approx 0 (1p)0

可得: A = − 1 − p = 1 p A = \frac{-1}{-p} = \frac{1}{p} A=p1=p1

再看 B B B

B = ( 1 − p ) + 2 ( 1 − p ) 2 + ⋯ + ( ∞ − 1 ) ( 1 − p ) ∞ − 1 = ( ( 1 − p ) + ( 1 − p ) 2 + + ⋯ + ( 1 − p ) ∞ − 1 ) + ( ( 1 − p ) 2 + ( 1 − p ) 3 + ⋯ + ( ∞ − 2 ) ( 1 − p ) ∞ − 1 ) \begin{aligned} B &= (1 - p) + 2(1 - p) ^ 2 + \dots + (\infty - 1) (1 - p) ^ {\infty - 1} \\ &= ((1 - p) + (1 - p) ^ 2 + + \dots + (1 - p) ^ {\infty - 1}) + ((1 - p) ^ 2 + (1 - p) ^ 3 + \dots + (\infty - 2) (1 - p) ^ {\infty - 1})\\ \end{aligned} B=(1p)+2(1p)2++(1)(1p)1=((1p)+(1p)2+++(1p)1)+((1p)2+(1p)3++(2)(1p)1)

C = ( 1 − p ) + ( 1 − p ) 2 + ⋯ + ( 1 − p ) ∞ − 1 C = (1 - p) + (1 - p) ^ 2 + \dots + (1 - p) ^ {\infty - 1} C=(1p)+(1p)2++(1p)1 D = ( 1 − p ) 2 + ( 1 − p ) 3 + ⋯ + ( ∞ − 2 ) ( 1 − p ) ∞ − 1 D = (1 - p) ^ 2 + (1 - p) ^ 3 + \dots + (\infty - 2) (1 - p) ^ {\infty - 1} D=(1p)2+(1p)3++(2)(1p)1

可用等比数列求得:

C = ( 1 − p ) p C = \frac {(1 - p)} {p} C=p(1p)

D D D 可以继续按上述方法分解。

整个式子分解得到:

∑ i = 1 ∞ ( 1 − p ) i − 1 ∗ i = 1 p + ( 1 − p ) p + ( 1 − p ) 2 p + ⋯ + ( 1 − p ) ∞ − 1 p = 1 + ( 1 − p ) + ( 1 − p ) 2 + ( 1 − p ) 3 + ⋯ + ( 1 − p ) ∞ − 1 p \begin{aligned} \sum\limits_{i = 1}^{\infty} (1 - p) ^ {i - 1} * i &= \frac{1}{p} + \frac{(1 - p)}{p} + \frac{(1 - p) ^ 2}{p} + \dots + \frac{(1 - p) ^ {\infty - 1}}{p}\\ &= \frac{1 + (1 - p) + (1 - p) ^ 2 + (1 - p) ^ 3 + \dots + (1 - p) ^ {\infty - 1}}{p}\\ \end{aligned} i=1(1p)i1i=p1+p(1p)+p(1p)2++p(1p)1=p1+(1p)+(1p)2+(1p)3++(1p)1

继续使用等比数列,设 R = 1 + ( 1 − p ) + ( 1 − p ) 2 + ( 1 − p ) 3 + ⋯ + ( 1 − p ) ∞ − 1 R = 1 + (1 - p) + (1 - p) ^ 2 + (1 - p) ^ 3 + \dots + (1 - p) ^ {\infty - 1} R=1+(1p)+(1p)2+(1p)3++(1p)1

R = 1 + ( 1 − p ) + ( 1 − p ) 2 + ( 1 − p ) 3 + ⋯ + ( 1 − p ) ∞ − 1 ( 1 − p )   R = ( 1 − p ) + ( 1 − p ) 2 + ⋯ + ( 1 − p ) ∞ − 1 + ( 1 − p ) ∞ ( 1 − p )   R − R = ( 1 − p ) ∞ − 1 − p R = ( 1 − p ) ∞ − 1 R = ( 1 − p ) ∞ − 1 − p \begin{aligned} R &= 1 + (1 - p) + (1 - p) ^ 2 + (1 - p) ^ 3 + \dots + (1 - p) ^ {\infty - 1}\\ (1 - p)\ R &= (1 - p) + (1 - p) ^ 2 + \dots + (1 - p) ^ {\infty - 1} + (1 - p) ^ {\infty}\\ (1 - p)\ R- R &= (1 - p) ^ {\infty} - 1\\ -pR &= (1 - p) ^ {\infty} - 1\\ R &= \frac{(1 - p) ^ {\infty} - 1}{-p} \end{aligned} R(1p) R(1p) RRpRR=1+(1p)+(1p)2+(1p)3++(1p)1=(1p)+(1p)2++(1p)1+(1p)=(1p)1=(1p)1=p(1p)1

∵ 0 ≤ p ≤ 1 \because0 \le p \le 1 0p1

∴ ( 1 − p ) ∞ ≈ 0 \therefore (1 - p) ^ {\infty} \approx 0 (1p)0

可得:

R = − 1 − p = 1 p ∑ i = 1 ∞ ( 1 − p ) i − 1 ∗ i = R p = 1 p 2 \begin{aligned} R &= \frac{-1}{-p} = \frac{1}{p}\\ \sum\limits_{i = 1}^{\infty} (1 - p) ^ {i - 1} * i &= \frac{R}{p}\\ &= \frac{1}{p ^ 2} \end{aligned} Ri=1(1p)i1i=p1=p1=pR=p21

将前面省略的 p p p 加上:

∑ i = 1 ∞ ( 1 − p ) i − 1 ∗ p ∗ i = p ∑ i = 1 ∞ ( 1 − p ) i − 1 ∗ i = p ∗ 1 p 2 = 1 p \begin{aligned} \sum\limits_{i = 1}^{\infty} (1 - p) ^ {i - 1} * p * i &= p \sum\limits_{i = 1}^{\infty} (1 - p) ^ {i - 1} * i \\ &= p * \frac{1}{p ^ 2}\\ &= \frac{1}{p} \end{aligned} i=1(1p)i1pi=pi=1(1p)i1i=pp21=p1
得证。

将此结论运用于题目:

Q:求 1 1 1~ n n n 中随机选取一个整数,可以重复,整数 x ∈ Z + , 1 ≤ x ≤ n x \in \mathbb Z^{+},1 \le x \le n xZ+,1xn ,求 x x x 被随机选取到的期望次数是多少?

就可列出式子:

E = ∑ i = 1 ∞ ( 1 − 1 n ) i − 1 ∗ 1 n ∗ i = n E = \sum\limits_{i = 1}^{\infty} (1 - \frac{1}{n}) ^ {i - 1} * \frac{1}{n} * i = n E=i=1(1n1)i1n1i=n

期望次数就为 n n n

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值