复高斯随机变量的模平方服从伽马分布

要确定复高斯随机变量的模平方是否服从伽马分布,我们需要对复高斯随机变量的性质进行分析。

复高斯随机变量的定义

设 \( Z \) 是一个复高斯随机变量,表示为:

\[ Z = X + iY \]

其中 \( X \) 和 \( Y \) 是独立同分布的实值高斯随机变量,且均服从均值为零、方差为 \(\sigma^2\) 的正态分布,即 \( X, Y \sim \mathcal{N}(0, \sigma^2) \)。

模平方的分布

复高斯随机变量的模平方 \( |Z|^2 \) 定义为:

\[ |Z|^2 = Z \overline{Z} = (X + iY)(X - iY) = X^2 + Y^2 \]

由于 \( X \) 和 \( Y \) 是独立的正态分布随机变量,我们需要确定 \( X^2 + Y^2 \) 的分布。

1. \(X^2\) 和 \(Y^2\) 的分布

由于 \( X \) 和 \( Y \) 服从 \(\mathcal{N}(0, \sigma^2)\),它们的平方 \( X^2 \) 和 \( Y^2 \) 服从卡方分布(自由度为1),即:

\[ X^2 \sim \sigma^2 \chi^2_1 \]

\[ Y^2 \sim \sigma^2 \chi^2_1 \]

2. \(X^2 + Y^2\) 的分布

由于 \( X \) 和 \( Y \) 是独立的,因此 \( X^2 + Y^2 \) 的分布是两个独立卡方分布的和,其分布为自由度为2的卡方分布:

\[ X^2 + Y^2 \sim \sigma^2 \chi^2_2 \]

我们知道,具有自由度 \( k \) 的卡方分布可以看作是伽马分布 \( \text{Gamma}(\alpha, \beta) \) 的特例,其中 \(\alpha = \frac{k}{2}\) 且 \(\beta = 2\)。因此:

\[ \chi^2_2 \sim \text{Gamma}\left(\frac{2}{2}, 2\right) = \text{Gamma}(1, 2) \]

然后,考虑到 \(\sigma^2\) 的缩放因子,我们有:

\[ \sigma^2 \chi^2_2 \sim \sigma^2 \text{Gamma}(1, 2) = \text{Gamma}(1, 2\sigma^2) \]

因此,模平方 \( |Z|^2 \) 的分布为:

\[ |Z|^2 \sim \text{Gamma}(1, 2\sigma^2) \]

结论

复高斯随机变量 \( Z \) 的模平方 \( |Z|^2 \) 服从参数为 \( (1, 2\sigma^2) \) 的伽马分布。

  • 12
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值