Halcon图像增强equ_histo _image/emphasize/scale _image max/shock_filter

本文介绍了Halcon库中用于图像增强的三种方法:直方图均衡提高亮度,对比度增强突出细节,以及使用冲击滤波器处理失焦图像。通过实例展示了如何使用equ_histo_image、emphasize和shock_filter算子实现这些功能。
摘要由CSDN通过智能技术生成

Halcon图像增强


图像增强主要是为了突出图像中的细节,为后续的特征识别或者检测做准备。图像增强可以有
多种方式,本节介绍直方图均衡、增强对比度、处理失焦图像这3种方式。

1. 直方图均衡

直方图均衡就是从图像的灰度图入手,建立一个0~255灰度值的直方图,统计每个灰度值在直方图中出现的次数,将灰度图中对应点的灰度值记录在直方图中。接着对该直方图进行均衡化操作,使像素的灰度值分布得更加均匀,从而增强图像的亮度。在Halcon 中可以使用equ_histo_image 算子进行直方图均衡,举例如下:

*读取图像,如果是彩色图像,需要转化为单通道黑白图像
read_image (board, 'data/boardEqu')
rgbl_to_gray (board, GrayImage)
equ_histo _image (GrayImage, ImageEquHisto)
*显示直方图
gray _histo (board, board, AbsoluteHistol, RelativeHisto1)dev_open_window (0, 0, 512, 512, 'black', WindowHandle)dev _set_color ('red')
gray_histo (ImageEquHisto, ImageEquHisto, AbsoluteHisto2, RelativeHisto2)
gen_region _histo (Histol, AbsoluteHistol, 255, 5,1)
dev_set_color ('green')
gen_region histo (Histo2, AbsoluteHisto2, 255, 450, 1)

在这个例子中,使用了cqu_histo_image 算子对图像的灰度直方图进行了均衡。图(a)为原始图像,图(b)为均衡后的图像,可见亮度有明显提升。
在这里插入图片描述

2. 增强对比度

除了可以使用均衡直方图增加亮度外,还可以增强图像的对比度,对图像的边缘和细节进行增
强,使其更加明显。在Halcon图像处理中,可以使用emphasize算子实现这一操作。代码举例如下,

read_image (text,'data/text')
emphasize (text, ImageEmphasize, 10, 10, 1.5)
dev_display(ImageEmphasize)

在这个例子中,使用了cmphasize 算子对图像的对比度进行了增强。如图所示为增强对比度
的结果。图(a)为原始图像,图(b)为增强对比度后的图像,可见对比度有明显提升。
在这里插入图片描述
除了使用emphasize 算子外,还可以使用scale image max 算子进行图像对比度增强,使其明暗变化更加明显。代码举例如下:

read image (text, 'data/text')
scale _image max (text, ImageScaleMax)
dev_display(ImageScaleMax)

在这个例子中,使用了scale_image_max对图像的对比度进行了增强。如图所示为增强对比度的结果。图(a)为原始图像,图(b)为使用scale_image max算子增强对比度后的图像,可见对比度有明显提升。
在这里插入图片描述

3. 处理失焦图像

一些对焦不准的图像可能存在模糊不清的问题,这时需要考虑锐化操作。锐化的算子有很多,常见的如Sobel算子、Canny算子、Laplace算子等。本文介绍一种常用的冲击滤波器,其也可以进行边缘的增强,原理是在图像的边缘形成一些冲击,以对边缘进行增强。Halcon 中使用shock_filter 算子实现这一功能。代码举例如下:

read image (test, 'data/defocusComponnet')
shock_filter (test, SharpenedImage, 0.5, 20, 'canny', 2.5)
dev_display(SharpenedImage)

shock_filter算子的第5个参数是canny,也可以选择laplace,分别对应两种不同的边缘检测算子。锐化效果如图所示。
在这里插入图片描述
由图可以看出,模糊的边缘变得清晰,但边缘仍有毛刺等不平滑现象,可以进一步调节锐化参数,直至得到比较理想的效果。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

electrical1024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值