数字信号处理4

文章探讨了连续幅度信号和正弦信号的量化过程,量化误差的概念被提出,它是由于将连续信号转换为离散信号时不可避免的信息损失。量化步长、动态范围和量化级数之间的关系被解释,指出通过增加量化级数可以减少量化误差。此外,还讨论了A/D转换中的量化误差和信号质量指标SQNR(信噪比),说明了字长增加如何提升SQNR。
摘要由CSDN通过智能技术生成

昨天是星期天,休息了一天,今天继续学习:

1、连续幅度信号的量化:

一个数字信号是一个数字序列,也就是说这个数字信号就可以用有限个数字来表示。

量化:通过把每个样本值表示为一个有限的数字,将一个离散时间连续幅度信号转换成数字信号的过程。

在我们用离散值级别的有限集合表示连续值信号的时候,引入的误差被称为量化误差或者量化噪音,那,这我就明白了,就是咱把一个信号给从连续传换成离散的时候,他就有误差了,emm,那让我来做一个学习一下:就用30Hz雷克子波吧:

 这就明显多了,如果我们用蓝色的点来量化30Hz的雷克子波,就会产生量化误差。将对样本x(n)的量化器操作表示成:Q[x(n)],让x_q(n)代表量化器输出端的量化后样本序列,那么就有:

x_q(n)=Q[x(n)]

于是,量化误差定义为量化值和实际样本值之差:

e_q(n)=x_q(n)-x(n)

量化之后要计算量化误差,因为,从理论上来说,模拟信号的量化总是会导致信息损失,这是量化操作引起的不明确过程,也就是说,量化误差是始终存在的, 但是,我们也可以通过选用充分的量化级数,进而将量化误差减小到一个有效的量级:

我们定义,x_{min},x_{max}分别是x(n)的最小值和最大值,量化级数L,就可以计算量化步长:

\Delta= \frac{x_{max}-x_{min}}{L-1}

分子是信号的动态范围,,如果动态范围是确定的,那么,量化级数就和量化误差成反比例关系。

2、正弦信号的量化:

从原始模拟信号x_a(t)通过采样就可以得到离散时间信号x(n)=x_a(nT)以及量化后的离散时间、离散振幅信号x_q(nT)

如果说,我买的采样率F_s满足采样定理,那么量化误差也就是A/D转换中的唯一误差来源,正因为这样,我们可以通过对模拟信号x_a(t)而不是x(n)=x_a(nT)进行量化而评价量化误差。

我们设量化误差e_q(n)=x_q(n)-x(n)\taux_a(t)在量化级内停留的时间,那么,均方误差功率为:

P_q=\frac{1}{2\tau}\int_{-\tau}^{\tau}e_q^2(t)dt=\frac{1}{\tau}\int_{0}^{\tau}e_q^2(t)dt

因为,e_q(t)=(\frac{\Delta}{2\tau})t,-\tau\leqslant t \leqslant \tau,所以:

P_q=\frac{1}{\tau}\int_{0}^{\tau}(\frac{\Delta}{2\tau})^2dt=\frac{\Delta^2}{12}

如果,量化器有着b位的精度,而且量化器覆盖震哥哥范围2A,那么,量化步长是\Delta=2A/2^b,

所以,代入上式,我们就得到了:

P_q=\frac{A^2/3}{2^{2b}}

信号x_a(t)的平均功率是:

P_x=\frac{1}{T_p}\int_{0}^{T_p}(Acos\Omega_0t)^2 dt=\frac{A^2}{2}

A/D转换器输出的质量通常是由信号和量化噪声之比(SQNR)来测量的,他是信号功率和噪声功率之比:

SQNR=\frac{P_x}{P_q}=\frac{3}{2}\cdot 2^{2b}

我们用dB表示的SQNR就是:

SQNR(dB)=10lg SQNR=1.76+6.02b

也即是说,字长每增加一位(2个量级),SQNR就会近似的增加6dB。

好了,第一章就学到这里了,估计会有两天不更新,我得做书后习题,做完之后再开始第二章的学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值