- 博客(101)
- 收藏
- 关注
原创 加速具身智能,英伟达推出的Cosmos世界基础模型
cosmos是一个用于加速物理AI开发的平台,可以预测与生成未来虚拟世界物理感知视频的神经网络,以帮助开发者进一步构建未来机器人与自动驾驶应用。WFM如大语言模型,属于一个基础性模型,WFM 通过学习大规模视频数据集中的物理规律和自然行为,能够生成与现实世界具有一定相似性的3D高清视频场景。同时通过扩散模型和自回归模型,对预训练的 WFM 进行微调,可以使其适应特定的物理 AI 任务。对于当下的具身智能模型训练,提供了新的支持。
2025-01-09 18:51:04 1085
原创 基于集成非互易磁光的超高耐久性光存内计算技术
光子计算利用光而非电子来进行数据处理的特性有望解决人工智能和机器学习领域对硬件能在超低功耗下实现超高计算吞吐量的需求,然而当前的光子存内计算架构面临存储阵列更新速度慢、能耗高以及耐久性不足等挑战。本文将从需求背景出发,逐一讲述该项研究的工作原理、实验验证以及未来展望等内容。
2025-01-07 11:21:01 851
原创 IS-2T2R存储器:AWS精度下降问题的解决方案
通过这一系列的改进,IS-2T2R结构有效地解决了AWS问题,提高了权重感测的准确性和存内计算的精度。》这篇文献,它提出了一种对称式的2T2R忆阻器结构,通过引入隔离晶体管解决了传统2T2R忆阻器非对称结构带来的权重感知问题,结合工艺优化,实现了42.2%的集成度提升和8.8fJ/op的能效,下面是详细介绍。2T2R结构中,用于存储正负权重的两个晶体管,它们的源极一个连接到RRAM单元,另一个通过SL接地,导致在读取过程中,即使两个RRAM单元存储了相同的权重值,由于一个晶体管的栅源电压V。
2024-12-30 11:07:41 1170
原创 让AI来设计芯片,指日可待?
Synopsys.ai Copilot是新思科技规划中的生成式AI系列的首款产品,其特色在于学习全新的技能并与团队的需求一起成长,让芯片设计与制造厂商可以更轻松地提升生产力,并达成芯片设计从架构的探索、设计到制造的所有阶段的设计目标。AI驱动的芯片自主设计;不管怎样,AI已经证明了其在芯片设计辅助领域的强大能力,作为芯片领域的从业者,也许在不久的将来,我们就能见证AI for EDA,通过商业化AI软件辅助芯片设计,降低设计难度和成本,实现真正的“AI for All Chip Design”。
2024-12-24 11:07:28 641
原创 存内架构IR-DROP问题详解-电容电导补偿
对于更复杂的电路,如广义逆电路,ConCom 方法同样适用,通过在左右阵列中进行行和列的电导补偿,实现电路输入节点的负载平衡,从而解决线性方程组问题。在 MMVM 电路中,通过确定补偿电导的值,使每个位线(BL)的电阻负载相等,可使电路可作为构建模块用于解决更复杂的问题,如基于局部竞争算法(LCA)的压缩感知(CS)恢复电路,通过将 MMVM 电路与模拟反相器、跨阻放大器(TIA)和软阈值模块相结合,实现从压缩输入信号中重建原始信号的功能。为满足复杂计算需求,。(b) 在125°C退火1小时后的分布。
2024-12-05 15:32:46 1203
原创 AI Top 100-AI 行业资讯网站
涵盖了各种技术主题,包括人工智能 (AI) 如何彻底改变网络和医疗保健等多个行业。如果您想了解人工智能的最新趋势和发展,这些网站时绝佳资源
2024-11-26 19:34:36 917
原创 电容、电导补偿在存内计算架构优化中的应用
对于更复杂的电路,如广义逆电路,ConCom 方法同样适用,通过在左右阵列中进行行和列的电导补偿,实现电路输入节点的负载平衡,从而解决线性方程组问题。在 MMVM 电路中,通过确定补偿电导的值,使每个位线(BL)的电阻负载相等,可使电路可作为构建模块用于解决更复杂的问题,如基于局部竞争算法(LCA)的压缩感知(CS)恢复电路,通过将 MMVM 电路与模拟反相器、跨阻放大器(TIA)和软阈值模块相结合,实现从压缩输入信号中重建原始信号的功能。为满足复杂计算需求,。(b) 在125°C退火1小时后的分布。
2024-11-26 11:22:00 760
原创 15W奖金!首届知存科技杯高校存内计算创新大赛 正式启动
WTM-8系列芯片基于知存科技自主设计的第二代3D存内计算架构,实现了极低功耗下的8K/120FPS视频实时处理,是知存科技存内计算技术创新、工艺创新取得突破性进展的又一里程碑。为了让客户更便捷高效的基于存内计算芯片开发AI应用,知存科技一直致力于完善和优化存内计算生态,不仅搭建了首个官方存内计算开发者中心,还利用Github将自主研发的软件、工具链正式开源。今年5月,知存科技更是升级了产学研融合战略,联合国内顶级高校,从技术创新、学术交流、人才培养等多方面积极推动存内计算发展。作为产学研融合的又一尝试,
2024-11-21 14:03:56 247
原创 豆包大模型团队开源RLHF框架,破解强化学习训练部署难题
其次,初始化RLHF数据流中的模型并分配虚拟资源池;在这个游戏中,小鸟充当智能体,动作是让小鸟用力向上飞一下或者保持不动,状态包括小鸟的位置、高度、速度等,奖励是获得的积分,回报是获得的奖励的总和,策略是小鸟选择避开水管而飞得更远的依据。基于 Ray 的分布式编程,动态计算图,异构调度能力,通过封装单模型的分布式计算、统一模型间的数据切分,以及支持异步 RL 控制流,HybridFlow 能够高效地实现和执行各种 RL 算法,复用计算模块和支持不同的模型部署方式,大大提升了系统的灵活性和开发效率。
2024-11-08 15:17:14 1640
原创 ISSCC 34.9 面向塑性神经网络集片上自学习与推理一体
为了配合上述PCA更好地工作,本文设计了一种差分阵列融合ADC(DMA-ADC),并配备了多元素稀疏感知(MESA)控制机制:通过ADC重用CSAM采样电容,减少面积开销,通过检测输入数据的稀疏性动态调整ADC的感测步数,进一步降低功耗。本文将5T-LF单元和SRAM集成在一起,将长期和短期信息存储集成在同一个计算阵列(PCA,Plastic Cell Array)中,减少数据传输的延迟和功耗,MVM和MEM协同工作,可以在一个周期内完成计算。是学习率,该式表达了塑性神经网络的权重更新方式。
2024-11-05 14:27:26 775
原创 城市极客,存内先锋-存内社区主理人招募令
存内计算社区面向杭州,北京,上海,深圳,招募城市站主理人,与我们一起构建创新的存内计算社区。我们在这里等你,一起开启技术的新篇章,一起成为引领未来的力量!
2024-10-25 16:40:41 235
原创 1024程序员节- AI智能时代,码出未来
在 1024 程序员节这个特殊的日子里,探讨了 AI 技术在不同领域的应用与发展。上海和深圳作为科技创新的前沿阵地,相关活动中的演讲内容更是聚焦了 AI 技术的核心要点,为我们展示了 AI 时代的新趋势和新机遇。
2024-10-24 17:27:42 523
原创 “AI教父”获诺贝尔物理学奖|神经网络究竟有什么魔力?
2023年,OpenAI推出GPT-4,实现了多模态大语言模型的进一步突破,参数量达到了1.76万亿,与GPT-3相比,GPT-4展示了更强的多模态处理能力,能够处理文本、图像等多种数据形式[11]。在MLLM领域,存内计算技术可以在MLLM训练和推理时提供显著的计算加速,由于神经网络巡礼和推理的核心是大规模的矩阵乘法和卷积操作,存内计算可以在存储单元中直接进行矩阵乘加运算,并在进行大量并行计算时表现出色。同时,存内计算等新兴硬件架构的出现,为大规模神经网络的计算提供了全新的解决方案[10]。
2024-10-21 11:20:12 1029
原创 3D-IC——超越平面 SoC 芯片的前沿技术
如何在不影响设计精度的前提下,在早期阶段实现有效的热分析,是3D-IC面临的一个重要挑战。3D-IC设计流程一般包含系统架构设计、芯片层面设计、TSV规划、热管理设计、先进布局布线、封装和堆叠、仿真验证等设计步骤,虽然目前有多种单一工具可以用来设计3D-IC,但要依靠每个设计团队开发自己的方法来整合流程。“3D-IC”,顾名思义是“立体搭建的集成电路”,相比于传统平面SoC,3D-IC引入垂直堆叠芯片裸片(die)和使用硅通孔(TSV)等先进封装技术,再提高性能、降低功耗和增加集成度方面展现了巨大的潜力。
2024-10-21 10:55:48 1612
原创 IGZO基底无电容DRAM单元前景看好
这种持久的数据保持能力在图中的存储节点电压(SN)变化中得到了清晰的展示,其中不同的数据级别在写入后保持稳定的电压状态,直到下一次写入操作。在制造工艺的角度上,DRAM的微缩存在多个方面的问题 [2]。如图3所示:DRAM的制造工艺受到图形微缩化(如何创建越来越密集的图案)、电容器(从圆柱体演变为柱状结构,需要对高深宽比进行构图)、电阻/电容(位线和字线需要提高电阻/电容才能提高访问速度)以及外围晶体管(从含氧化硅的多晶硅栅到高K金属栅的演变)的多重限制,传统方案已经不宜缩小工艺制程。
2024-09-27 16:15:42 1425
原创 ISSCC 34.8 用于AI边缘设备的22nm,31.2TFLOPS/W,16Mb ReRAM存内浮点计算架构
未来,存储技术的发展前景广阔,将迎来一系列突破性进展。首先,在存储器架构优化方面,通过进一步优化ReRAM阵列结构,可以显著提升并行计算能力。研究新型存储单元设计将大幅提高存储密度和计算效率,满足日益增长的计算需求。
2024-09-27 16:03:05 1147
原创 活动报名| 探索存内计算的未来,共话AGI时代
探索存内计算的未来,共话AGI时代,包含存内计算技术架构以及最新趋势,AGI开源项目交流,存内计算实操上板体验;
2024-09-23 18:02:10 317
原创 ISSCC34.7解析一种具备内存编码与刷新功能的eDRAM查找表数字存内计算芯片
数字存内计算(Digital Computing-in-Memory, DCIM)是一种将计算操作直接集成到存储单元中的新兴计算架构。传统计算模型(冯·诺依曼架构)中的计算和存储是分离的,数据必须频繁在存储器和处理单元之间移动,在大数据和人工智能应用中会导致显著的延迟和能耗开销。数字存内计算的目标是通过在存储单元中直接执行计算任务,减少数据移动,提高系统整体的能效。在DCIM架构中,存储单元不仅用于存储数据,还可以直接执行简单的计算任务,如加法、乘法、逻辑操作等。
2024-09-20 11:36:26 1433
原创 率先搭载存内计算AI芯片,维迈通引领骑行通讯降噪革新
以降噪性能举例,此次发售的三款新品均率先采用了先进存内计算芯片来部署AI降噪算法,在性能测试阶段通过了193km/h赛道极速测试、12000km路测,并记录了400余组数据,在超低功耗下完美运行消噪算法、风向风压算法、男女生算法、麦克风偏离算法等。未来,知存科技将继续推动存内计算技术的创新,为更多行业领域带来智能、高效的AI解决方案。随着维迈通XR、V10S、V10X三款新品的全平台正式发售,我们相信技术的进步能够为每一位骑行爱好者提供更智能、更高效的骑行体验,让每一次骑行都成为一次难忘的旅程。
2024-09-13 16:52:29 636
原创 【ISSCC】论文详解-34.6 28nm 72.12TFLOPS/W混合存内计算架构
在基于外积的双模CIM架构中,文章使用了多种方法以提升能效EF,使用CSR格式存储数据以处理稀疏矩阵、执行外积运算以避免使用大扇入的多级加法器树,但是文章在进行双模计算时有着组件空闲的问题,在INT模式下,有关指数、符号数等计算组件处于空闲状态,双模情况下的硬件利用率仍是一个具有挑战性的问题。以具体的乘累加操作为例,如下图2所示,对于W[7:0]×A[7:0]的乘累加操作,首先通过如下所示的公式转换可以将其分为乘法和累加两种操作,分别用橙色和蓝色标注,橙色部分用模拟CIM执行,蓝色部分用数字CIM执行。
2024-09-04 16:47:02 1548
原创 具身智能 | CCF专家谈术语
在2023年即将举办的CVPR 2023具身智能研讨会上,组织了包括基于AI Habitat、AI2-THOR、iGibson、Sapien仿真器的物体重排列、具身问答、具身导航和机器人操作挑战赛,这些具身智能任务与其他线上AI任务具有完全不同的范式,即:基于一个具身智能体(如机器人),通过该智能体的“看”、“说”、“听”、“动”、“推理”等方式,与环境进行交互和探索任务目标,从而解决环境中的各项挑战性任务。现阶段的重点任务主要包括具身导航、问答和包括物体重排列在内的、多种多样的物体操纵任务等。
2024-09-02 13:50:24 1362
原创 智谱携基座大模型 GLM-4-Plus 亮相 KDD,清言全新升级视频通话功能
GLM-4-Plus 是智谱全自研 GLM 大模型的最新版本,它标志着智谱继续瞄准通用人工智能,持续推进大模型技术的独立自主创新。最新推出的基座大模型,和此前发布的 CogVideoX 等模型一道,完善了智谱自主原创的全栈大模型谱系,推动智谱实现面向世界先进水平的全面对标。清言作为第一批 C 端上线的大模型产品,过去的一年,常常以文字和语音的形式和大家交流。在发布并开源 2B 版本后,5B 版本也正式开源,其性能进一步增强,是当前开源视频生成模型中的最佳选择。长文本能力比肩国际先进水平。
2024-08-30 17:49:38 1047
原创 【知识库系列】MPR/多模态方向观察:图像视频与3D生成
随着技术的发展,多模态,3D,视频生成这三个领域不断融合,由NUS PHD团队共创多模态图像知识库,涵盖多模态综述,多模态工程化工具和平台,产品生成形式,以及商业化产品。点击链接获取完整文档。
2024-08-30 16:54:23 1480
原创 中文大模型基准测评2024上半年报告
其中qwen2-7b(70亿参数)取得62分,打败了上一代版本的qwen1.5-32b(320亿参数),qwen2-1.5b(15亿参数)打败了Llama-2-13B-Instruct(130亿参数),展现了更小尺寸的模型的极致性能。国内模型也经历了波澜壮阔的14个月的迭代周期,其中Top1的模型经历了8次易主,不断提升国内模型的最强战力。国内大模型理科表现优异的模型,如Qwen2-72B、AndesGPT和山海大模型4.0稍落后于GPT-4-Turbo-0409,均取得76分的高分。
2024-08-30 15:46:46 1782
原创 GLM大模型 - CogVideoX:5B 开源,2B 转为 Apache 协议
为了促进社区的自主使用和开放式创新,我们现决定将参数规模更大、性能更强的产品级模型 CogVideoX-5B 开源,同时 CogVideoX-2B 的开源协议调整为更加开放的Apache 2.0协议。为进一步支持开源社区的广泛使用与开发,我们已将 CogVideoX-2B 的协议调整为 Apache 2.0,任何企业与个人均可自由使用。同时,我们推出了在线体验,并将其源代码开源,涵盖了插帧、超分辨率等先进功能,均采用开源技术方案,实现全流程开源。同样支持多种推理精度;
2024-08-29 19:24:14 1160
原创 《黑神话:悟空》横空出世:人工智能加速下的视觉算法神话
不同于外置芯片对画面进行超分辨率得到的画面,显卡级的超分辨率可以获取到游戏生成该画面时使用的一系列数据,进行更准确的插帧,如DLSS帧生成的卷积自动编码器根据当前和之前的游戏帧由Ada Lovelace架构下的光流加速器生成的光流场、运动矢量和深度等游戏内部数据进行超分辨率操作。一类是缓解显卡压力的AI技术,如插帧、超分辨率,根据显卡制造商的不同,代表性的技术有英伟达的DLSS 3、AMD的FSR 3.0、英特尔的XeSS、苹果的MetalFX,这些技术往往同时包括超分辨率和插帧。
2024-08-27 14:12:16 719
原创 开源活动:Witin-NN引领存内计算量化的创新与共享
开源赋能:Witin-NN引领存内计算量化的创新与共享 1. 使用witin-nn工具,自由选择算法,实现量化训练部署2. 将引用witin-nn的项目发布至个人Github账号 1. 发布者将获得存内社区积分800,可兑换社区礼品2. 线下开源活动【Open Coding Day】参与名额
2024-08-20 10:36:56 286
原创 探索Witin-NN Tools量化开源项目:模拟神经网络映射映射到存内芯片的计算过程
如上所示,输入 x 量化为 uint8 的 NPU_x,权重 weight 量化为 int8 的 NPU_weight,偏置 bias 量化为 128 的整数倍,即 NPU_bias,已知 NPU_x,NPU_weight,NPU_bias,可计算出 NPU_y',其中引入模拟电路噪声,得到 NPU_y,最终量化为 int8。它不仅支持从8位到12位的输入和输出量化,还实现了权重的8位量化,通过精确的量化策略,显著提升了模型在硬件上的运行效率,同时最大限度地保留了模型的原始精度。
2024-08-16 12:42:15 1029
原创 论文分析|高效长文本生成的技术与应用
—计算时每一层时都需要储存:在模型的不同层,特别是多头自注意力(Multi-Head Attention)层和多层感知器(MLP)层中,计算过程中会产生中间值,如Q(Query)、K(Key)、V(Value)张量,以及MLP层的中间线性变换结果。传统的串行计算方法可能无法满足效率需求,长序列下模型训练和推理会出现新的瓶颈,需要从硬件出发设计算法进行并行优化,如利用现代硬件(如GPU、TPU)的并行处理能力,可以显著加速模型的训练和推理过程。分解过程都是类似的,都是 分解、计算、汇总。
2024-08-06 10:48:57 1175
原创 【存内社区首场直播】—— AI新入局者的视觉探索与法律边界
随着人工智能技术的飞速发展,AI在视觉领域的应用已成为创新的前沿。本次直播,我们将深入探讨AI在视觉艺术、设计、媒体等领域的革命性影响,同时关注其在法律和伦理层面的挑战与边界。一起探索AI在视觉领域的无限可能,同时理解其在法律框架内的发展之道。
2024-07-30 16:13:57 281
原创 【ISSCC论文详解】-ISSCC.34.5 用于统一加速CNN和Transformers的818-4094 TOPS/W电容可重构CIM宏单元
DDAC路径的重用于电容重置中,减少了晶体管的使用,优化了电路的总体布局。在输入或权重为8bit时,CR-CIM的transformer模块SQNR相较于[2]和[3]提高了22dB,CSNR相较于[2]和[3]至少提高了13dB,CNN模块的SQNR也略有提高,说明了CR-CIM具有优秀的噪声控制能力。(1)电容可重新配置的CIM架构(CR-CIM):支持基于电荷的计算和基于电容的ADC操作以同时发挥了电荷域CIM和电容域CIM的优势,从而提升了系统的面积效率和CSNR。
2024-07-29 16:44:22 1322
原创 具身智能,存内计算芯片应用新赛道
存内计算芯片通过器件、架构、电路、工艺的协同创新,突破了冯诺依曼架构的限制以实现高能效比。例如,在实时语音转写应用方面,具身智能通常在本地实时地进行语音转写和处理,不仅减少了延迟还实现了更加丰富和多样化的交互体验,与此相比传统的人工智能依赖于预训练的数据,在面对实时变化的环境时难以快速反应。具身智能作为人工智能的下一个浪潮,相比传统的工业机器人、协作机器人等,其有着智能化程度高、工作场景限制小、能够自主规划复杂工作等特点,也由此对部署在底层的AI芯片的实时性、能效比、算力、集成度等参数提出了更高的需求。
2024-07-29 14:19:02 1320
原创 【0630开发者活动】机器学习算法在存内计算芯片WTM2101上的部署
WTM2101芯片是由Witin知存科技开发的高性能存内计算芯片,专为加速AI计算设计,如图1.1所示。存内计算作为一种革命性技术,其主要优势在于将计算功能直接集成到存储器中,从而显著减少数据在芯片内部的传输距离,降低延迟,增强处理速度。这种架构使得WTM2101能够在保持超低功耗的同时,实现高达50Gops的运算能力,这一点在机器学习和深度学习应用中尤为关键。WTM2101的高性能和超低功耗这一优势极大提升了对机器学习模型的处理效率。
2024-07-15 16:43:08 944 1
原创 【开发者社区技术沙龙】北京站 | 架构革新,加速大模型未来
本次沙龙活动旨在深入探讨革新底层新算力硬件架构以及软件平台,加速大模型发展与应用的可能性。集结业内专家与当地开发者,共同探讨架构革新的新路径,同时为大家提供一个平等交流与动手实验的平台。
2024-06-26 11:13:24 229
原创 ISSCC论文详解2024 34.2——双端口设计实现高面积利用的浮点/整数存算
以图中的PDE(0)=011111101 (253)为例,它是PDE-MAX,并且PDE-REF1=011111111(255),则PDE(0)位于 zone-0(ZFG=1),它仅需对PDE(0)[2:0]进行反转,即101反转为010,反转值为2(NSH(0)=2),这样一来,就可以利用三个反相器完成对齐的操作。近期的浮点存算工作,已进行了一定改进,但也未能充分利用面积资源,主要的资源浪费集中在指数对齐计算方面,整数计算本不需该计算模式,因此在计算整数时,这部分浮点计算硬件未能得到应用,如下图所示。
2024-06-26 10:55:25 1402
原创 【技术研讨会直播预约】:针对大模型,存内计算架构应用分析探讨
在人工智能飞速发展的今天,大模型的训练和推理对计算资源的需求日益增长。传统计算架构已逐渐难以满足其对速度和效率的极致追求。本次直播,我们将深入探讨如何利用存内计算技术,为大模型带来革命性的加速效果。
2024-06-14 11:11:50 311
原创 功耗降低近40%,存内计算芯片助力导览行业AI新突破
导游讲解器的降噪,一般指的是使用指向性的麦克风、带有降噪功能麦克风、双麦降噪等传统的降噪方式,受声源与麦克风距离、讲解环境的影响大,还经常突出齿音等瑕疵。在远距离条件下人声拾音音质依然饱满清晰,无需外接麦克风。外形设计的迭代,智能降噪、远距离拾音的效果提升,让客户新一代产品不仅在旅游、企业接待等场景能够更好地服务用户,还能够适用于会议同声传译、大型展览展会接待、户外活动及培训等场景中。未来,随着技术进步和市场需求的增长,导览领域将更多的与多模态交互技术相结合,为用户提供更加丰富、个性化的游览体验。
2024-06-12 10:18:43 283
原创 智谱AI推出GLM-4,性能逼近ChatGPT-4
GLM-4的端侧版本在个性化程度和能力上同样具有优势,在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B及其人类偏好对齐的版本GLM-4-9B-Chat均表现出超越此前已被证明很强的端侧大模型Llama-3-8B的卓越性能。GLM-4的端侧版本根据模型种类、token序列回溯长度和是否具备多模态处理能力分为了多个版本,适应不同用户、不同硬件资源情况条件下的部署的需求。该模型提供了INT4版本,可以在显存不足的本地环境(8G显存设备)中配置使用[5]。
2024-06-11 14:39:35 1523
原创 ISSCC论文详解-ISSCC.34.1 适用于高精度 AI 应用的 28nm 83.23TFLOPS/W POSIT
BRPU执行基于移位或的机制。与同样使用POSIT数据格式的ISSCC’21,本课题在相同的技术节点下功耗降低了近10倍,POSIT 16下的能效比提升316.11倍、POSIT 8下的能效比提升334.60倍,POSIT 16下的面效比提升312.95倍、POSIT 8下的面效比提升306.87倍。(本文的R表示为:正值时,连续的1的个数减去1,例:R=3表示为“11110”;第二种模式,当Wn[0]=0时,存储4b权重,将Wn[3:1]视为3b权重,使用2bWm[1:0]中的备用位来存储Wn[P]。
2024-06-05 15:27:52 1270
原创 存内计算从浮点运算优化对数据经济的提升
随着大数据和数据经济的不断发展,海量数据的收集、存储、分析都需要大量的人力物力,其对芯片算力的需求不断增长,而传统冯﹒诺依曼架构已无法支持当今大数据算力需求,因此新型存内计算架构作为一种解决方案被提出。数据经济是指以数据为核心资源,通过数据的收集、分析和应用,创造经济价值的一种经济形态。存内计算,将存储器和计算单元集成在一起,旨在使芯片计算单元兼具存储数据、处理数据的能力,计算单元可以通过极低的开销获取数据,理论上拥有无限的数据带宽,具有高计算能效、高带宽、低计算延时的特点,能够与数据经济的需求形成耦合。
2024-05-28 17:12:47 962
新型存内计算架构的应用与挑战
2024-10-24
中国移动研究院-存算一体白皮书
2024-05-09
存算上机位软件详情介绍
2024-04-07
WTM2101编译工具链介绍
2024-04-07
WTM2101 ZT1 开发板用户使用手册
2023-12-22
【基于存内计算架构语音算法开发】的实验环境安装包
2023-12-06
【基于存内计算架构的语音算法开发】工程软件安装包
2023-12-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人