- 博客(153)
- 收藏
- 关注
原创 存算一体开发者社区正式上线!重塑 AI 硬件未来,开启算力革命新坐标
当数据洪流遭遇算力瓶颈,存算一体技术正以破局者之姿重构 AI 硬件的未来图景。今天,国内首个聚焦存算一体技术的开发者生态阵地 ——存算一体开发者社区正式上线!这里不仅是技术研发的前沿阵地,更是构建「技术研发 - 产学研协同 - 人才成长」全链路生态的核心枢纽,邀你一同在算力革命的浪潮中抢占开发新坐标!
2025-06-24 17:23:49
764
原创 论文解析-《针对忆阻神经网络加速器的混合粒度剪枝方法研究》
摘要:针对忆阻器神经网络加速器面临的剪枝难题,本文提出一种混合粒度剪枝方法。该方法创新性地结合细粒度剪枝(保留关键权重)和结构化剪枝(整列删除冗余),通过ADMM算法动态评估权重冗余度,实现硬件效率与模型精度的平衡。实验表明,在AlexNet和VGG16模型上分别实现23.7倍和21.7倍压缩率,精度损失仅0.16%-0.41%,同时降低95%以上的硬件能耗。该研究为存算一体芯片设计提供了有效的模型压缩方案。
2025-12-23 15:44:01
988
原创 Nature子刊重磅——基于忆阻器的自适应ADC,打破存内计算最后一道枷锁
长期以来,CIM 技术虽然解决了冯·诺依曼架构的“内存墙”问题,却因为模数转换的高昂开销而陷入了新的瓶颈。香港大学团队通过引入基于忆阻器的自适应量化技术,成功将 ADC 从系统的“负担”转变为“助力”。这不仅补齐了 CIM 技术的最大短板,更展示了一种后摩尔时代集成电路设计的新智慧:从“对抗物理不确定性”转向“利用物理特性”。
2025-12-11 14:32:28
825
原创 下一代存算突破技术-HBF
摘要: 随着AI大模型对内存需求的激增,DDR5和HBM等传统存储技术面临成本高、容量受限的挑战。Sandisk推出的高带宽闪存(HBF)通过3D堆叠NAND技术,在接近HBM带宽的同时提供更大容量(如首代512GB/堆叠)和更低功耗,成为AI推理场景的理想选择。HBF还可与存内计算技术深度融合,解决数据供给瓶颈,并探索控制器端计算或3D堆叠存算一体化等创新方向,为边缘端部署千亿级模型提供可能。未来,HBF或将成为存储与计算融合的关键载体。
2025-12-02 11:17:24
733
原创 忆阻器存算一体技术:硬件测试的挑战与发展情况
摘要:忆阻器存算一体技术通过直接在存储单元中完成计算,有效突破了传统冯·诺依曼架构的"存储墙"瓶颈。相比SRAM和MRAM方案,RRAM忆阻器具有非易失性、高密度和低功耗优势,更适用于AI大模型处理。然而该技术面临三大硬件测试挑战:Forming过程管控、器件参数离散性及IRDrop问题,需要新型DFT技术与算法补偿协同解决。当前研究已从可行性验证发展到系统级优化,如STELLAR边缘学习芯片和自适应忆阻器ADC等创新方案,使能效提升达数量级。尽管仍需克服材料稳定性等挑战,忆阻器存算一体
2025-12-01 15:01:55
1118
原创 《基于CMOS工艺的高精度模拟存算一体芯片》
南京大学梁世军、缪峰团队在《Science Advances》发表论文,提出基于晶体管几何比率的超高精度模拟计算方法。该方法创新性地利用稳定的晶体管几何尺寸比例替代传统易变器件参数编码权重,实现了0.101%的均方根误差精度(目前报道最高水平)。实验显示,该芯片在-78.5℃至180℃极端温度及10T强磁场下仍保持稳定性能,在MNIST手写识别中达97.97%准确率,并能高精度求解纳维-斯托克斯方程。该工作突破了模拟计算精度瓶颈,为AI加速和科学计算提供了新范式。
2025-12-01 14:16:55
1081
原创 《Nature Electronics》重磅:北大团队首创存算一体新架构,颠覆传统AI排序
北京大学研究团队在《Nature Electronics》发表了一项基于忆阻器的存算一体排序架构创新成果。该研究突破了传统排序算法在CPU/GPU上的性能瓶颈,提出"就地排序"理念,通过三项核心技术实现突破:1) 数字读取技术消除物理比较器依赖;2) 树节点跳过技术实现智能剪枝优化;3) 跨阵列并行策略增强可扩展性。实验显示,该架构在速度、面积效率和能源效率上分别提升7.7倍、32.46倍和160.4倍,在北京地铁路径规划和AI模型剪枝等应用中验证了其显著优势。这项技术为AI硬件加速开辟
2025-11-28 11:41:31
677
原创 存算一体架构在空间计算中的应用
摘要:空间计算作为融合物理与数字世界的前沿技术,面临算力与功耗的挑战。本文探讨存算一体(CIM)架构如何通过硬件创新解决这一问题:1)分析空间计算的核心需求(感知定位、3D重建、多模态交互);2)揭示传统冯·诺依曼架构的瓶颈;3)以英伟达Cosmos和世界模型为例,阐述存算一体在降低数据中心能耗(减少60%数据搬运耗能)和边缘计算(如自动驾驶芯片实现256TOPS/35W)中的应用优势。研究表明,存算一体技术可推动空间计算向高能效方向发展,同时支持绿色AI的可持续发展。
2025-11-11 13:54:46
1022
原创 AI推理计算需求飞升,在传统路径外,聚焦异构计算发展
摘要:人工智能的快速发展推动了计算需求激增,传统单一架构难以满足AI推理对性能、能效和实时性的要求。异构计算通过整合CPU、GPU、FPGA等不同处理器协同工作,成为解决这一挑战的关键。本文探讨了异构计算的发展背景、核心原理及其在智能驾驶、推荐系统等领域的应用案例,分析了当前面临的技术挑战,并展望了Chiplet等未来发展方向。异构计算通过为特定任务匹配最优计算资源,正成为提升算力与能效的重要途径,将深刻影响未来计算范式。
2025-10-29 17:36:11
943
原创 适应存算框架的软硬件协同-混合卷积核设计策略
本文提出了一种适应存算一体(CIM)框架的混合卷积核软硬件协同设计策略。在软件映射端,采用KERNTROL方法通过列相关掩模动态调整卷积核形态,实现高达100%的阵列利用率;在硬件执行端,SKCIM架构通过双层阵列实现"核动数据静"的滑动计算机制,显著降低数据搬运开销。实验表明,该方案在32×32原型上运行5层CNN时,可减少88%的内存访问,同时保持95%以上的MNIST分类准确率。这种混合卷积核设计通过浅层小核保精度、深层大核提效率的策略,有效解决了传统存算框架中阵列利用率低和访存能
2025-10-09 12:06:28
808
原创 【存内计算生态链-清华专场】存算一体引爆算力革命,空间智能开启人机共生新纪元
技术融合推动人机共生新时代:从存算一体架构突破算力瓶颈,到空间计算重构数字交互体验,再到AIGC赋能内容创作,技术正加速重塑人机关系。清华大学"视觉算力生态革新技术工坊"揭示了三个关键趋势:存算一体开发者社区构建产学研生态,推动下一代计算架构落地;空间计算使数字生命具备触感交互能力;AIGC重构艺术创作流程。这些技术突破的共同指向是:人类将从"技术操作者"进化为"规则定义者",用想象力与伦理判断引导技术融合方向,实现更有温度的人机共生。
2025-09-17 19:51:00
758
原创 五天四夜,70+伙伴共建,AI 创造者嘉年华 | 特别版块,AI人才角
整场活动由硅星人与北京中关村科学城创新发展有限公司、北京中关村创业大街科技服务有限公司联合发起,五天四夜,白天黑夜,持续高能。
2025-09-17 14:52:12
658
原创 社区主题征文——「异构融合与存算一体:架构探索与创新实践」算力技术征文
存算一体开发者社区发起异构计算与存算一体技术征文活动,面向AI、大数据等领域开发者,旨在构建高质量技术知识库。活动设两个赛道:CPU-GPU异构计算实战(含入门与进阶方向)和存算一体架构创新(含入门与进阶方向)。要求参赛作品原创首发,3000-8000字,结构完整,逻辑清晰。优秀文章将获得现金奖励(300-500元/篇)及多渠道推广机会。投稿截止2025年12月1日,期待分享架构设计、实战经验与创新应用,推动技术普及深化。
2025-09-15 15:00:55
577
原创 【精彩回顾 · 南京开发者活动】存内计算的技术突破与AI生态构建
"芯际觉醒"南京站活动聚焦存内计算技术突破与AI生态构建,于2025年9月7日在南京阿里中心举行。活动汇聚高校学者、芯片专家与开发者,展示了存算一体领域三大前沿实践,实测能效比超7nmGPU十倍。现场达成多项产学研合作意向,并设置AR体验等互动环节。专家分享环节涵盖存算一体技术发展、AR应用及大模型创新,推动南京本地AI技术生态发展。活动作为"算力跃迁"系列首站,后续将在北上广深等城市继续开展,促进存算一体技术从理论到产业的转化。
2025-09-12 15:01:29
793
原创 清华专场重磅开启!视觉计算革新引领,跨界解锁存算一体与空间计算新生态
【活动预告】9月13日,存算一体开发者社区联合清华大学学生创客空间协会举办视觉计算生态革新主题工坊,聚焦智能眼镜、多模态模型等前沿技术。活动亮点:1)跨界对话:涵盖艺术创作、芯片架构、智能设备全产业链;2)实战干货:探讨存算一体突破、数字IP进化、AR开发等落地议题;3)前瞻视角:解析视觉计算的指数级算力需求与存内计算解决方案。适合开发者、硬科技爱好者及创意工作者参与,共同探索视觉技术的未来边界。报名通道已开启,详情见知存科技专场。
2025-09-09 15:01:07
418
原创 南京开发者活动 | 存内计算的技术突破与AI生态构建
阿里中心南京站将于2025年9月7日举办"存内计算的技术突破与AI生态构建"主题沙龙。活动包含技术分享、行业专家讲座、科技市集等环节,前10名签到者可获赠礼品。名额有限,需提前报名。
2025-09-02 16:42:12
385
原创 存算一体前沿技术——无需比较器即可高效排序,性能提升高达百倍
北京大学杨玉超教授团队在《自然·电子》发表突破性研究,提出基于忆阻器的存算一体排序系统(MSIM)。该系统创新性地采用"数字读取"和"树节点跳跃"技术,无需传统比较器即可在内存中直接完成排序,解决了存算一体架构处理非线性任务的难题。通过多区块、位切片和多能级三种并行策略,系统在五个基准测试中实现最高7.7倍速度提升和160.4倍能效提升。在Dijkstra算法和神经网络剪枝等实际应用中,MSIM分别展现出610倍能效提升和数量级的性能优势。该成果突破了冯·诺依曼架构的
2025-09-02 15:55:38
723
原创 存算社区学术会议系列|重磅福利突袭!2025 CCF SYS 免费参会名额开抢
9 月北京,CCF SYS 2025 即将启幕!本次大会是中国计算机系统和芯片领域专家阵容最强、报告内容最丰富、参会规模最大、覆盖计算机芯片与系统研制全周期的旗舰盛会。更重磅的是,本次大会合作企业「知存科技」面向硕博研究生及博士后开放免费参会报名通道,更特别提供差旅补贴。!
2025-09-01 16:16:43
408
原创 8月科技前沿速递 | 存算一体开发者社区月报
科技前沿动态:中科院微电子所成功研制出高性能RRAM存算一体芯片,能效达55.21-88.51TOPS/W;华为推出AISSD系列新品,突破AI存储性能瓶颈;DeepSeek大模型升级至V3.1版本,增强Agent能力;智谱AI发布全球首个手机智能体AutoGLM2.0,支持语音指令完成跨应用操作。这些创新成果在边缘计算、AI存储、大模型和智能终端领域取得重要突破。
2025-08-29 11:07:29
720
原创 英伟达推出机器人最强大脑,物理AI革命到来
英伟达发布新一代机器人系统JetsonThor,推动物理AI革命。该平台性能大幅提升,具备2070 FP4 TFLOPS算力和128GB内存,支持多模态AI应用,实现实时传感器处理和视觉推理。JetsonThor运行生成式AI模型,响应时间快,功耗可调,为仿人机器人等应用提供强大支持。开发者套件售价3499美元起,已有200万开发者使用英伟达技术加速机器人开发。物理AI将引领制造业和物流业的变革。
2025-08-28 15:43:56
973
原创 AI计算提效关键。自适应弹性加速,基于存算架构做浮点运算
本文探讨了自适应弹性加速技术在提升芯片能效比方面的应用。该技术通过动态调整计算资源、功耗模式和硬件功能,实现性能与功耗的优化平衡。在资源层面,异构计算(如ARM的DynamIQ技术)实现核心的动态调度;功耗层面,精细化电源管理(如苹果M系列芯片)实现毫瓦级控制;功能层面,可重构硬件(如FPGA)支持多模态加速。此外,文章还分析了浮点存内计算的自适应精度和可重构功能优势,指出其能效提升潜力,但也面临面积成本高、编译器设计复杂等挑战。总体而言,自适应弹性计算与浮点存算的结合为AI芯片设计提供了新的优化方向。
2025-08-22 12:15:01
1309
原创 Multiverse模型:突破多任务处理和硬件效率瓶颈的AI创新(下)
摘要:杨新宇博士团队针对大语言模型中的冗余计算问题,提出Multiverse并行编码框架,显著提升推理效率。通过将相互独立的上下文并行处理,结合SGLang的RadixCache机制,实现4.5倍推理加速。同时引入APE动态调整策略,在保持98%准确率的前提下支持8万token长文本处理。相比传统自回归模型,该方法在128K token任务中将推理时间从21秒缩短至6秒,突破模型长度限制并维持95%准确率。研究展示了数据特性与硬件能力协同优化的新型架构潜力,为未来缓存机制设计提供新思路。
2025-08-18 16:22:09
681
原创 【精彩回顾】浙江大学-存内计算生态链变革专场
AI存内计算技术迎来爆发增长,浙大专场活动聚焦产业生态创新。存内计算技术突破冯诺依曼架构瓶颈,实现成本降70%、功耗降90%的显著优势,预计2025年全球芯片出货量破亿。活动汇聚产学研力量,分享四大核心议题:Rokid展示AR+AI融合技术突破;知存科技解析多模态与存内计算的协同应用;浙大团队演示AI重构工作流实践;Gitcode探讨开源生态价值。存算一体开发者社区已聚集1.4万用户,通过工具开源、训练营和竞赛推动技术落地,加速AI从理论到应用的转化。
2025-08-15 17:13:51
952
原创 Multiverse模型:突破多任务处理和硬件效率瓶颈的AI创新(上)
杨新宇博士提出Multiverse模型,突破传统自回归与扩散模型的局限。该模型创新性地融合数据特性与硬件效率,通过MapReduce机制实现动态并行生成:先规划子任务(Map阶段),并行处理后合并结果(Reduce阶段)。实验显示Multiverse在8K-32K生成长度上效率提升1.3-2倍,且支持批量推理时稳定加速。关键技术包括:结构化数据蒸馏流程、MultiverseAttention机制(兼容Transformer架构),以及基于SGLang优化的推理引擎。该设计使中小团队仅需8张B100显卡和3小
2025-08-15 15:39:22
1051
原创 AI沙龙报名 | 存算一体驱动AI应用·线下技术交流会
本次AI沙龙聚焦"存算一体如何赋能大模型应用",针对当前AI技术面临的算力瓶颈问题,邀请行业专家共同探讨破局之道。活动将于8月10日在北京中关村创业大街举行,通过线下交流碰撞思想火花,推动AI技术创新发展。
2025-08-04 18:50:38
244
原创 存算突破与智能前沿 | 七月开发者月报
中国科研团队在存算一体AI芯片领域取得多项突破。北大团队首创存算一体排序架构,解决传统架构在非线性排序中的效率问题;复旦与绍芯实验室联合推出两款AI芯片,分别针对LLM离群值适配和片上训练需求;北航团队则通过近似计算等方法,研制出两款高能效芯片,最高能效达3048TOPS/W。这些创新成果将为人工智能应用提供更强大的算力支持。
2025-08-04 18:46:32
484
原创 TCAD论文详解:An End-to-End In-Memory Computing System Based on a 40-nm eFlash-Based IMC SoC
该论文介绍了一个端到端的电路-工具链-系统协同设计框架,通过硬件友好的量化方法、算子优化技术以及高效的内存映射策略,在语音和图像处理任务中均实现了高精度和低功耗。这项工作为IMC技术的商业化应用解决了工具链障碍,未来可以支持如Transformer等更新、更复杂的神经网络结构。也可将此框架应用于健康监测、工业自动化等更多样化的AI场景中。
2025-08-04 14:41:46
1230
原创 2025 VLSI论文详解:A 28nm 84.9KOPS 1.82 RISC-V Crypto-SoC with Primitive-based Deep-coupling Unified Post
华中科技大学团队在VLSI2025上提出一款基于RISC-V的后量子密码SoC芯片,采用28nm工艺实现。该芯片通过深度耦合架构、向量化指令集和密码原语重构三大创新技术,在保持可编程性的同时,显著提升后量子密码处理性能。实验结果显示,其吞吐量达84.9KOPS,能效比为1.82,较同类方案提升1.22-5.84倍,支持Kyber、Dilithium等NIST标准算法,并兼容传统加密需求。该设计为后量子时代的密码安全提供了高效芯片解决方案。
2025-08-04 14:26:03
1011
原创 ISSCC 14.5 支持浮点转置的SRAM-CIM阵列
本文提出了一种面向边缘AI训练的高性能计算内存架构,采用28nm工艺实现192.3TFLOPS/W能效。创新性包括:1)循环权重映射6T-SRAM阵列,实现阵列内权重转置和MAC电路复用;2)支持多种数据格式的数字CIM架构;3)精准/近似双模位并行MAC电路。该架构通过循环移位存储、动态激活对齐和共享运算单元,解决了传统转置CIM方案的硬件冗余问题,同时采用带符号定点尾数编码策略支持浮点运算。测试显示其FP8格式在能效和精度间取得良好平衡,为边缘设备提供了高效的训练解决方案。
2025-07-16 11:07:56
1168
原创 第二十一届全国容错计算学术会议(CCF CFTC 2025)将于7月18日至20日在杭州举行
中国计算机学会容错计算专业委员会将于2025年7月18-20日在杭州举办第二十一届全国容错计算学术会议(CCFCFTC2025)。会议将围绕芯片、系统、软件等层面的容错技术展开研讨,预计吸引800余名专家学者,通过技术报告、论文分享等形式探讨前沿进展。知存科技创始人王绍迪将作《大语言模型的存内计算加速》主题报告,同时公司将携“天才博士计划”亮相。会议由CCF主办,北京邮电大学等单位承办,旨在推动我国容错计算领域发展。
2025-07-15 14:37:54
546
原创 JOS论文详解:28nm RRAM模拟存内计算芯片工作
清华大学集成电路学院吴华强教授团队在《Journal of Semiconductors》发表了一项基于RRAM的存内计算芯片研究。该研究针对传统存内计算方案忽视数据写入效率的问题,提出了三大创新:1)混合1T1R/2T2R编程方案,将编程速度提升2.5-4.3倍;2)无运放、读写复用的双开关直流ADC,品质因数提升2.6-3.8倍;3)分段字线结构,实现精细控制。测试表明,该576K单元芯片在28nm工艺下达到2.82TOPS/mm²的面积效率,混合编程模式在速度、功耗和准确性方面均优于传统方案。这一成果
2025-07-11 11:51:54
1291
原创 这个夏天属于黑客松,邀请全世界最疯狂的 Builders
Hello World,迄今为止中国规模最大的黑客松Adventure X回归,2024年,属于年轻人的第一场Adventure X黑客松吸引了2300人参与。2025年,Adventure X和小红书一起,邀请你【用创造改变世界,哪怕1%】
2025-07-10 17:26:35
376
原创 存算一体这些岗位招人啦!知存科技2025火热招聘中
企业就业机会直通车:知存科技提供行业顶尖待遇,广阔发展前景,优质工作环境,存算一体,工艺制程,硬件架构,AI算法,等你来
2025-07-08 17:45:30
1051
原创 ISSCC 25 14.6论文详解: 《A 28nm 64kb Bit-Rotated Hybrid-CIM Macro with an Embedded Sign-Bit-Processing Ar
东南大学司鑫团队在ISSCC2025提出了一种创新的混合存内计算宏芯片,采用位旋转特征输入方案、嵌入式符号位处理技术和多比特融合双粒度协同量化器,有效解决了传统混合存内计算的精度损失、性能损失和面积开销问题。该芯片在28nm工艺下实现了67.8TOPS/W的高能效,在图像分类、视觉Transformer和自然语言处理等AI任务中精度损失均低于2%。与现有方案相比,该设计在硬件综合性能指标上提升显著,代表了混合存内计算技术的重要突破。
2025-07-03 16:20:12
1502
原创 论文解析:Insights into DeepSeek-V3: Scaling Challenges and Reflections on Hardware for AI Architectures
大语言模型(LLMs)的快速规模化暴露了当前硬件架构在内存容量、计算效率、互联带宽的瓶颈。DeepSeek-V3通过硬件感知的模型协同设计,在2048块NVIDIA H800 GPU上实现了低成本大规模训练与推理。随着集群规模的指数级增长,硬件的鲁棒性与可靠性对于大模型将愈加重要。
2025-06-20 17:07:15
854
原创 “洞见AI未来“主题征文:深度解读Mary Meeker 2025年度AI技术报告
该报告围绕人工智能(AI)技术的爆发式增长及其对全球科技、经济、社会的颠覆性影响展开,其指出,AI 不仅是技术革命,更将重塑全球地缘政治与经济格局,与之带来的商业化与伦理挑战也仍需长期观察。商业分析报告:需引用文档数据(如 “AI 训练算力 15 年增长 360%/ 年”),结合至少 3 个案例展开分析。技术验证论文:基于开源大模型(如Llama 3、Stable Diffusion等)的技术验证与实验分析。深入解读报告中的关键技术趋势(如Agentic AI、AI Native应用)。
2025-06-16 15:35:35
533
原创 【精彩回顾.上海交通大学专场】---大模型推理需求下的计算生态链变革
2025 年 6 月 6 日,由存算一体开发者社区与上海交通大学联合主办的 “大模型推理需求下的计算生态链变革” 专场活动在上海交通大学闵行校区顺利举办。本次活动汇聚了算能、OpenDataLab、知存科技、天翼云等企业专家,围绕大模型时代的算力架构创新、数据生态构建及产业实践展开深度探讨,推动产学研用协同发展。
2025-06-09 15:12:03
937
原创 GTC2025——英伟达布局推理领域加速
英伟达GTC2025大会于2025年3月18日在美国加州圣何塞举行,NVIDIA CEO黄仁勋在会上展示了公司近年来的成就,并提出了通过纵向扩展(scale up)和横向扩展(scale out)解决推理问题的未来布局。GTC大会自2009年起每年举办,已成为AI、深度学习、高性能计算等领域的重要技术发布和交流平台。黄仁勋强调,AI已进入代理AI阶段,算力需求依然强劲,尤其是推理能力在端侧的重要性。英伟达推出了Dynamo和CPO两项关键技术,提升token产出的效率以及优化成本。
2025-05-12 17:56:44
1811
原创 ISSCC 25 14.4 性能达51.6TFLOPs/W的全数据路径存内计算宏单元,逼近稀疏性极限,应用于复合人工智能时损失低于2-30
本文由清华大学尹首一团队的Zhiheng Yue和Xujiang Xiang撰写,发表于2025年IEEE国际固态电路会议(ISSCC),探讨了复合AI模型在端侧部署时面临的挑战,并提出了三项创新解决方案。首先,文章指出复合AI模型虽然降低了参数量,但由于多个模型特征交融,传统基于单一模型的简化方法失效,导致精度损失和功耗增加。针对这些问题,作者提出了后置乘积对齐、全通路存内计算和稀疏捕获三项技术。
2025-05-12 15:07:15
1042
原创 ISSCC 25 14.3论文详解:面向卷积神经网络与 Transformer 的 28 纳米、17.83 - 62.84TFLOPS/W 广播对齐浮点存内计算宏单元
东南大学司鑫教授团队在ISSCC 2025上发表了一篇关于存内计算(CIM)的论文,提出了一种新型的广播对齐非二进制补码浮点存内计算宏(B-A-N2CMAC FP-CIM)。该研究针对高精度和高能效边缘AI芯片的需求,解决了传统浮点计算中的精度损失、性能损失和面积开销问题。通过创新的广播输入、嵌入式区域高效自适应对齐方案和格式混合的N2CMAC,该芯片在28nm工艺下实现了64kb的B-A-N2CMAC FP-CIM宏,支持BF16和INT8两种数据类型。
2025-05-12 14:56:17
1736
新型存内计算架构的应用与挑战
2024-10-24
中国移动研究院-存算一体白皮书
2024-05-09
存算上机位软件详情介绍
2024-04-07
WTM2101编译工具链介绍
2024-04-07
【基于存内计算架构语音算法开发】的实验环境安装包
2023-12-06
WTM2101 ZT1 开发板用户使用手册
2023-12-22
【基于存内计算架构的语音算法开发】工程软件安装包
2023-12-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅