文章目录
切片(Slice)
当取一个list或tuple的部分元素部分元素时:
cc= [1,2,3,4,5]
print([cc[0],cc[1],cc(2)])
但是如果列表或者元组很大,要取前N个元素,就需要用循环,比较麻烦。
#注意list取值是[i]
r=[]
N = 4
for i in range(4):
r.append(cc[i])
print(r)---->[1,2,3,4]
or
for i in range(4):
print(cc[i])
对这种经常取指定索引范围的操作,为了操作方便,python提供了切片功能。
L[start:stop:step]start开始,包括start,stop结束,不包括stop,step是步长,默认为1
以上代码就可以简化为
#[0:3]是从0开始,到3结束,不包括3.
print(cc[0:3])--->[1,2,3]
#默认开始是0
print(cc[:3])--->[1,2,3]
print(cc[2:4])--->[3,4]
print(cc[-2:-1])--->[4]
print(cc[:4:2])--->[1,3]
printt(cc[:])--->[1,2,3,4,5]#从头到尾
//取值应该是从左向右取值
print(cc[-1:2]);//就会报错
tuple和字符串也可以执行切片操作,同list方法相同。
迭代
迭代(Iteration)即遍历,可以用for ...in
来实现。
比如C中:
for (i=0; i<10; i++) {
n = list[i];
}
Python的for循环抽象程度要高于C的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。
如字典,没有下标,但是还是可以迭代:
d={'a': 1, 'b': 2, 'c': 3}
for key in d
print(key)--->a c b
因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。
再次解释:for
循环中,是每次循环都会将从列表/元组等中读取出来的元素赋予迭代变量,而不用手动赋予。
强调:默认情况下,dict迭代的是key
。如果要迭代value
,可以用for value in d.values()
,如果要同时迭代key和value
,可以用for k, v in d.items()
字符串也是迭代对象
>>> for ch in 'ABC':
... print(ch)
...
A
B
C
因此在python中,只要是可迭代对象,都可以用for
循环来遍历
检测是否可迭代:
用collections
模块的Iterable
类型判断
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
如果要对list实现类似Java/C那样的下标循环怎么办?Python内置的enumerate
函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C
两个变量
#一次遍历一个,然后赋值
for x, y in [(1,1),(2,2),(3,3)]
print(x,y)--->1 1 2 2 3 3
练习:输入一个序列,找出最大值最小值
num = (input ("输入一个数字序列,用逗号间隔:"))
numbers = num.split(',')
cc = list(map(int, numbers))#将输入的字符分割,并以此映射为int类型
def find_min_max(L):
if L !=[]:
max = L[0]
min = L[0]
for i in L[1:]:
if max < i:
max = i
if min > i:
min = i
return (min,max)
else:
return (None,None)
[x,y] = find_min_max(cc)
print(x,y)
学到后面发现这里还是有漏洞的,split()不能切分连续的空格,要切分连续的空格,可参考正则表达式:
import re
num = (1,2,3 4 5;6;;8)
numbers = re.split(r'[\,\s\;]+',num) --->['a', 'b', 'c']
列表生成式
列表生成式即(List Comprehensions),是Python内置的非常简单却强大的可以用来创建list
的生成式。
如:
用for生成
list(range(1,11))
生成[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
要生成[1x1, 2x2, 3x3, ..., 10x10]
方法1:
L = []
for i in range(1,11)
L.append(i*i)
方法2:
[i*i for i in range(1,11)]
都可以生成[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素i*i
放到前面,后面跟for
循环,就可以把list创建出来
表示式或用的函数写在for
前面
还可以添加其他语句,实现其他功能:
[x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
同样,也支持嵌套循环
[m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
//如果m,n两个变量中间有字符,如'=',需要写m+ +n
同for循环一样,也可以使用两个变量:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
print([m +'=' +n for m in 'ABC' for n in 'XYZ'])
--->['A=X', 'A=Y', 'A=Z', 'B=X', 'B=Y', 'B=Z', 'C=X', 'C=Y', 'C=Z']
变小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
if…else
以下代码正常输出偶数:
>>> [x for x in range(1, 11) if x % 2 == 0]
[2, 4, 6, 8, 10]
但如果给if
加上else
[x for x in range(1, 11) if x % 2 == 0 else 0]
File "<stdin>", line 1
[x for x in range(1, 11) if x % 2 == 0 else 0]
^
SyntaxError: invalid syntax
这是因为跟在for
后面的if
是一个筛选条件,不能带else
,否则如何筛选?
但是,把if写在for前面必须加else
[x if x % 2 == 0 else -x for x in range(1, 11)]
[-1, 2, -3, 4, -5, 6, -7, 8, -9, 10]
如果x % 2 == 0
就输出x
,和正常的if 条件判断: 输出 else: 输出
不一样。这个把if的输出放在了前面,放后面就不成立
因为for前面的部分是一个表达式,它必须根据x计算出一个结果。因此,考察表达式:x if x % 2 == 0
,它无法根据x计算出结果,因为缺少else,必须加上else(必须加).
总结来说:
for后面是筛选因此不加else,for前是表达式子,需要else
练习:
如果list中既包含字符串,又包含整数,用lower()输出字母,并小写
L = ['HeLLo', 'WoRlD', 18, 'ApPlE', None]
print([x[0].lower()+x[1:] for x in L if isinstance(x,str)])
print([x[0].lower()+x[1:] if isinstance(x, str) else x for x in L])
'结果:'
['heLLo', 'woRlD', 'apPlE']
['heLLo', 'woRlD', 18, 'apPlE', None]
生成器
通过列表生成式创建的列表,内存受限制,容量有限,而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
generator保存的是算法
打印出generator的每一个元素
可以通过next()
函数获得generator
的下一个返回值.
也可以用for循环 for i in generator
第一种方法:
>>> L = [i + j for i in 'ABC' for j in 'MNB']
>>> L
['AM', 'AN', 'AB', 'BM', 'BN', 'BB', 'CM', 'CN', 'CB']
>>> g = (i + j for i in 'ABC' for j in 'MNB' )
>>> g
<generator object <genexpr> at 0x1022ef630>
就是把创建list
时候最外层的[]
改为()
next(g)--->AM
next(g)--->AN
next(g)--->AB
next(g)--->BM
但是当访问到末尾时,再next()就会报错
第二种:
斐波拉契数列(Fibonacci):
除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
注意: a, b = b, a + b
意思是:
t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]
上面的函数和generator仅一步之遥。要把fib
函数变成generator
,只需要把print(b)
改为yield b
就可以了(yield b
相当于返回b):
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
for n in fib(6):
print(n)-->1--1--2--3--5--8
用for
循环调用generator
时,没有输出最后的返回值done
.想要拿到,就必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
#须将fib(6)赋值给一个变量,f = fib(10) # f 是一个迭代器,由生成器返回生成
>>> g = fib(6)
>>> while True:
... try:
... x = next(g)#这里写next(fib(6))就会无限执行fib函数,输出永远为1,陷入死循环,
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done
yield 可以理解成return 吧
L = [1]
L = L +[1]
print(L) --->[1,1]
练习,杨辉三角
'每次根据上一个的L,修改,得到下一个L。··规律:每一个值等于它斜上方左右值想加'
def triangles():
L = [1]
while len(L)<5:
yield L
L = [1]+[L[i]+L[i+1] for i in range(len(L)-1)]+[1] #内部用for循环实现中间的数值相加,两边则单独加
for n in triangles():
print(n)
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
地址指向的理解:
L = [1]#相当于创建一个列表,重新分配了一块空间,假设L地址为&1
a = L #a指向L的地址&1
b = L#a指向L的地址&1
print(a)--->[1]
print(b)--->[1]
L.append(1)--->L [1,1] #写入到L的地址上
print(a)--->[1,1]
print(b)--->[1,1]
k = [1] 假设k地址为&2
k.append(2)--->[1,2]
L = k #L指向了k的地址 &2
c = L #c指向了L的地址&2
print(a)--->[1,1] a和b还是指向的&1
print(b)--->[1,1]
print(c)--->[1,2]
迭代器
可以直接作用于for循环的数据类型有以下几种:
- 一类是集合数据类型,如list、tuple、dict、set、str等;
- 一类是generator,包括生成器和带yield的generator function。
直接作用于for循环的对象统称为可迭代对象:
Iterable
。 可以使用isinstance()
判断一个对象是否是Iterable对象
>>> from collections.abc import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator对象:
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
3 为什么list、dict、str等数据类型不是Iterator
这是因为Python的
Iterator
对象表示的是一个数据流
,Iterator
对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度
,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
凡是可作用于for循环的对象都是Iterable类型;
凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;