python高级特性(切片/迭代/列表生成式/生成器)笔记

切片(Slice)

当取一个list或tuple的部分元素部分元素时:

cc= [1,2,3,4,5]
print([cc[0],cc[1],cc(2)])

但是如果列表或者元组很大,要取前N个元素,就需要用循环,比较麻烦。

#注意list取值是[i]
r=[]
N = 4
for i in range(4):
    r.append(cc[i])
print(r)---->[1,2,3,4]
or
for i in range(4):
    print(cc[i])

对这种经常取指定索引范围的操作,为了操作方便,python提供了切片功能。
L[start:stop:step]start开始,包括start,stop结束,不包括stop,step是步长,默认为1
以上代码就可以简化为

#[0:3]是从0开始,到3结束,不包括3.
print(cc[0:3])--->[1,2,3]
#默认开始是0
print(cc[:3])--->[1,2,3]
print(cc[2:4])--->[3,4]
print(cc[-2:-1])--->[4]
print(cc[:4:2])--->[1,3]
printt(cc[:])--->[1,2,3,4,5]#从头到尾
//取值应该是从左向右取值
print(cc[-1:2]);//就会报错

tuple和字符串也可以执行切片操作,同list方法相同。

迭代

迭代(Iteration)即遍历,可以用for ...in来实现。
比如C中:

for (i=0; i<10; i++) {
    n = list[i];
}

Python的for循环抽象程度要高于C的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。
如字典,没有下标,但是还是可以迭代:

d={'a': 1, 'b': 2, 'c': 3}
for key in d
    print(key)--->a  c  b
因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

再次解释for循环中,是每次循环都会将从列表/元组等中读取出来的元素赋予迭代变量,而不用手动赋予。
强调:默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()
字符串也是迭代对象

>>> for ch in 'ABC':
...     print(ch)
...
A
B
C

因此在python中,只要是可迭代对象,都可以用for循环来遍历
检测是否可迭代:
collections模块的Iterable类型判断

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

如果要对list实现类似Java/C那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']):
...     print(i, value)
...
0 A
1 B
2 C

两个变量

#一次遍历一个,然后赋值
for x, y in [(1,1),(2,2),(3,3)]
    print(x,y)--->1 1 2 2 3 3

练习:输入一个序列,找出最大值最小值

num = (input ("输入一个数字序列,用逗号间隔:"))
numbers = num.split(',') 
cc = list(map(int, numbers))#将输入的字符分割,并以此映射为int类型
def find_min_max(L):
    if  L !=[]:
    	max = L[0]
        min = L[0]
        for i in L[1:]:
            if max < i:
                max = i
            if min > i:
                min = i
        return (min,max)
    else:
        return (None,None)
[x,y] = find_min_max(cc)
print(x,y)

学到后面发现这里还是有漏洞的,split()不能切分连续的空格,要切分连续的空格,可参考正则表达式:

import re
num = (1,2,3 4 5;6;;8)
numbers = re.split(r'[\,\s\;]+',num) --->['a', 'b', 'c']

列表生成式

列表生成式即(List Comprehensions),是Python内置的非常简单却强大的可以用来创建list的生成式。
如:

用for生成

list(range(1,11))
生成[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
要生成[1x1, 2x2, 3x3, ..., 10x10]
方法1:
L = []
for i in range(1,11)
    L.append(i*i)
 方法2:
 [i*i for i in range(1,11)]
 都可以生成[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素i*i放到前面,后面跟for循环,就可以把list创建出来
表示式或用的函数写在for前面
还可以添加其他语句,实现其他功能:

 [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

同样,也支持嵌套循环

[m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
//如果m,n两个变量中间有字符,如'=',需要写m+   +n

同for循环一样,也可以使用两个变量:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']

print([m +'=' +n for m in 'ABC' for n in 'XYZ'])
--->['A=X', 'A=Y', 'A=Z', 'B=X', 'B=Y', 'B=Z', 'C=X', 'C=Y', 'C=Z']

变小写

>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']

if…else

以下代码正常输出偶数:

>>> [x for x in range(1, 11) if x % 2 == 0]
[2, 4, 6, 8, 10]

但如果给if 加上else

[x for x in range(1, 11) if x % 2 == 0 else 0]
  File "<stdin>", line 1
    [x for x in range(1, 11) if x % 2 == 0 else 0]                                                
                                             ^    
SyntaxError: invalid syntax

这是因为跟在for后面的if是一个筛选条件,不能带else,否则如何筛选?

但是,把if写在for前面必须加else

[x if x % 2 == 0 else -x for x in range(1, 11)]
[-1, 2, -3, 4, -5, 6, -7, 8, -9, 10]

如果x % 2 == 0就输出x,和正常的if 条件判断: 输出 else: 输出不一样。这个把if的输出放在了前面,放后面就不成立
因为for前面的部分是一个表达式,它必须根据x计算出一个结果。因此,考察表达式:x if x % 2 == 0,它无法根据x计算出结果,因为缺少else,必须加上else(必须加).

总结来说:

for后面是筛选因此不加else,for前是表达式子,需要else

练习:

如果list中既包含字符串,又包含整数,用lower()输出字母,并小写

L = ['HeLLo', 'WoRlD', 18, 'ApPlE', None]
print([x[0].lower()+x[1:] for x in L if isinstance(x,str)])
print([x[0].lower()+x[1:] if isinstance(x, str) else x for x in L])
'结果:'
['heLLo', 'woRlD', 'apPlE']
['heLLo', 'woRlD', 18, 'apPlE', None]

生成器

通过列表生成式创建的列表,内存受限制,容量有限,而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

generator保存的是算法
打印出generator的每一个元素
可以通过next()函数获得generator的下一个返回值.
也可以用for循环 for i in generator

第一种方法:

>>> L = [i + j for i in 'ABC' for j in 'MNB']
>>> L
['AM', 'AN', 'AB', 'BM', 'BN', 'BB', 'CM', 'CN', 'CB']
>>> g = (i + j for i in 'ABC' for j in 'MNB' )
>>> g
<generator object <genexpr> at 0x1022ef630>

就是把创建list时候最外层的[]改为()

next(g)--->AM
next(g)--->AN
next(g)--->AB
next(g)--->BM

但是当访问到末尾时,再next()就会报错

第二种:

斐波拉契数列(Fibonacci):
除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

注意: a, b = b, a + b
意思是:

t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]

上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了(yield b相当于返回b):

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

for n in fib(6):
    print(n)-->1--1--2--3--5--8

for循环调用generator时,没有输出最后的返回值done.想要拿到,就必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

#须将fib(6)赋值给一个变量,f = fib(10) # f 是一个迭代器,由生成器返回生成
>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)#这里写next(fib(6))就会无限执行fib函数,输出永远为1,陷入死循环,
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

yield 可以理解成return 吧

L = [1]
L = L +[1]
print(L) --->[1,1]

练习,杨辉三角

'每次根据上一个的L,修改,得到下一个L。··规律:每一个值等于它斜上方左右值想加'
def triangles():
    L = [1]
    while len(L)<5:
        yield L
        L = [1]+[L[i]+L[i+1] for i in range(len(L)-1)]+[1] #内部用for循环实现中间的数值相加,两边则单独加

for n in triangles():
    print(n)
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]

地址指向的理解:

L = [1]#相当于创建一个列表,重新分配了一块空间,假设L地址为&1
a = L #a指向L的地址&1
b = L#a指向L的地址&1
print(a)--->[1]
print(b)--->[1]
L.append(1)--->L [1,1]  #写入到L的地址上
print(a)--->[1,1]
print(b)--->[1,1]
k = [1] 假设k地址为&2
k.append(2)--->[1,2]
L = k #L指向了k的地址 &2
c = L #c指向了L的地址&2
print(a)--->[1,1] a和b还是指向的&1
print(b)--->[1,1]
print(c)--->[1,2]

迭代器

可以直接作用于for循环的数据类型有以下几种:

  1. 一类是集合数据类型,如list、tuple、dict、set、str等;
  2. 一类是generator,包括生成器和带yield的generator function。

直接作用于for循环的对象统称为可迭代对象:Iterable。 可以使用isinstance()判断一个对象是否是Iterable对象


>>> from collections.abc import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator对象:

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
3 为什么list、dict、str等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

凡是可作用于for循环的对象都是Iterable类型;
凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值