大模型 RAG 优化 收集一

痛点1:文档切分粒度不好把控,既担心噪声太多又担心语义信息丢失

问题1:如何让LLM简要、准确回答细粒度知识?

问题2:如何让LLM回答出全面的粗粒度(跨段落)知识?

分析:文档分割不够准确,导致模型有可能只回答了两点,而实际上是因为向量相似度召回的结果是残缺的。有人可能会问,那完全可以把切割粒度大一点,比如每10个段落一分。但这样显然不是最优的,因为召回片段太大,噪声也就越多。LLM本来就有幻觉问题,回答得不会很精准

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值