第一次排版有误,给各位造成困扰了,现已更新
目录
想法
由于训练模型选择的过于复杂,或是训练数据集包含无用的数据,导致假设函数对于训练数据集拟合效果极好,然而对于测试数据集或预测的数据出现较大偏差。
对于上述问题,如果将训练模型简化,或者将无用数据剔除,就能改善这个问题。
正则化是通过某种“惩罚”措施,选择较小的 θ θ 值作为参数,从而达到模型的简化和数据的剔除。
数学表示
J(θ)=12m[∑mi=1(hθ(xi)−yi)2+λ∑nj=1θ2j] J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x i ) − y i ) 2 + λ ∑ j = 1 n θ j 2 ]
其中 ∑mi=1(