ML笔记——正则化

第一次排版有误,给各位造成困扰了,现已更新


目录


想法

由于训练模型选择的过于复杂,或是训练数据集包含无用的数据,导致假设函数对于训练数据集拟合效果极好,然而对于测试数据集或预测的数据出现较大偏差。
对于上述问题,如果将训练模型简化,或者将无用数据剔除,就能改善这个问题。
正则化是通过某种“惩罚”措施,选择较小的 θ θ 值作为参数,从而达到模型的简化和数据的剔除。

数学表示

J(θ)=12m[mi=1(hθ(xi)yi)2+λnj=1θ2j] J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x i ) − y i ) 2 + λ ∑ j = 1 n θ j 2 ]
其中 mi=1(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值