深入理解lightGBM

转载自 https://blog.csdn.net/program_developer/article/details/103838846

本文主要内容概览:
在这里插入图片描述

1. LightGBM简介

GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务;在各种数据挖掘竞赛中也是致命武器,据统计Kaggle上的比赛有一半以上的冠军方案都是基于GBDT。而LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。

1.1 LightGBM提出的动机

常用的机器学习算法,例如神经网络等算法,都可以以mini-batch的方式训练,训练数据的大小不会受到内存限制。而GBDT在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。尤其面对工业级海量的数据,普通的GBDT算法是不能满足其需求的。

LightGBM提出的主要原因就是为了解决GBDT在海量数据遇到的问题,让GBDT可以更好更快地用于工业实践。

1.2 XGBoost的缺点及LightGBM的优化

(1)XGBoost的缺点

在LightGBM提出之前,最有名的GBDT工具就是XGBoost了,它是基于预排序方法的决策树算法。这种构建决策树的算法基本思想是:首先,对所有特征都按照特征的数值进行预排序。其次,在遍历分割点的时候用KaTeX parse error: Expected 'EOF', got '#' at position 3: O(#̲data)O(#data) …O(#bin) ,极大的减少了内存消耗;

  • LightGBM 采用了直方图算法将存储特征值转变为存储 bin 值,降低了内存消耗;
  • LightGBM 在训练过程中采用互斥特征捆绑算法减少了特征数量,降低了内存消耗。
  • 4.2 缺点

    • 可能会长出比较深的决策树,产生过拟合。因此LightGBM在Leaf-wise之上增加了一个最大深度限制,在保证高效率的同时防止过拟合;
    • Boosting族是迭代算法,每一次迭代都根据上一次迭代的预测结果对样本进行权重调整,所以随着迭代不断进行,误差会越来越小,模型的偏差(bias)会不断降低。由于LightGBM是基于偏差的算法,所以会对噪点较为敏感;
    • 在寻找最优解时,依据的是最优切分变量,没有将最优解是全部特征的综合这一理念考虑进去;

    5. LightGBM实例

    本篇文章所有数据集和代码均在我的GitHub中,地址:https://github.com/Microstrong0305/WeChat-zhihu-csdnblog-code/tree/master/Ensemble%20Learning/LightGBM

    5.1 安装LightGBM依赖包

    pip install lightgbm
    
     
     
    • 1

    5.2 LightGBM分类和回归

    LightGBM有两大类接口:LightGBM原生接口 和 scikit-learn接口 ,并且LightGBM能够实现分类和回归两种任务。

    (1)基于LightGBM原生接口的分类

    import lightgbm as lgb
    from sklearn import datasets
    from sklearn.model_selection import train_test_split
    import numpy as np
    from sklearn.metrics import roc_auc_score, accuracy_score
    

    # 加载数据
    iris = datasets.load_iris()

    # 划分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3)

    # 转换为Dataset数据格式
    train_data = lgb.Dataset(X_train, label=y_train)
    validation_data = lgb.Dataset(X_test, label=y_test)

    # 参数
    params = {
    ‘learning_rate’: 0.1,
    ‘lambda_l1’: 0.1,
    ‘lambda_l2’: 0.2,
    ‘max_depth’: 4,
    ‘objective’: ‘multiclass’, # 目标函数
    ‘num_class’: 3,
    }

    # 模型训练
    gbm = lgb.train(params, train_data, valid_sets=[validation_data])

    # 模型预测
    y_pred = gbm.predict(X_test)
    y_pred = [list(x).index(max(x)) for x in y_pred]
    print(y_pred)

    # 模型评估
    print(accuracy_score(y_test, y_pred))

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36

    (2)基于Scikit-learn接口的分类

    from lightgbm import LGBMClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.model_selection import GridSearchCV
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from sklearn.externals import joblib
    

    # 加载数据
    iris = load_iris()
    data = iris.data
    target = iris.target

    # 划分训练数据和测试数据
    X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2)

    # 模型训练
    gbm = LGBMClassifier(num_leaves=31, learning_rate=0.05, n_estimators=20)
    gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5)

    # 模型存储
    joblib.dump(gbm, ‘loan_model.pkl’)
    # 模型加载
    gbm = joblib.load(‘loan_model.pkl’)

    # 模型预测
    y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_)

    # 模型评估
    print(‘The accuracy of prediction is:’, accuracy_score(y_test, y_pred))

    # 特征重要度
    print(‘Feature importances:’, list(gbm.feature_importances_))

    # 网格搜索,参数优化
    estimator = LGBMClassifier(num_leaves=31)
    param_grid = {
    ‘learning_rate’: [0.01, 0.1, 1],
    ‘n_estimators’: [20, 40]
    }
    gbm = GridSearchCV(estimator, param_grid)
    gbm.fit(X_train, y_train)
    print(‘Best parameters found by grid search are:’, gbm.best_params_)

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42

    (3)基于LightGBM原生接口的回归

    对于LightGBM解决回归问题,我们用Kaggle比赛中回归问题:House Prices: Advanced Regression Techniques,地址:https://www.kaggle.com/c/house-prices-advanced-regression-techniques 来进行实例讲解。

    该房价预测的训练数据集中一共有 818181 8181 81 8181813列是浮点型变量。训练数据集中存在缺失值。

    import pandas as pd
    from sklearn.model_selection import train_test_split
    import lightgbm as lgb
    from sklearn.metrics import mean_absolute_error
    from sklearn.preprocessing import Imputer
    

    # 1.读文件
    data = pd.read_csv(’./dataset/train.csv’)

    # 2.切分数据输入:特征 输出:预测目标变量
    y = data.SalePrice
    X = data.drop([‘SalePrice’], axis=1).select_dtypes(exclude=[‘object’])

    # 3.切分训练集、测试集,切分比例7.5 : 2.5
    train_X, test_X, train_y, test_y = train_test_split(X.values, y.values, test_size=0.25)

    # 4.空值处理,默认方法:使用特征列的平均值进行填充
    my_imputer = Imputer()
    train_X = my_imputer.fit_transform(train_X)
    test_X = my_imputer.transform(test_X)

    # 5.转换为Dataset数据格式
    lgb_train = lgb.Dataset(train_X, train_y)
    lgb_eval = lgb.Dataset(test_X, test_y, reference=lgb_train)

    # 6.参数
    params = {
    ‘task’: ‘train’,
    ‘boosting_type’: ‘gbdt’, # 设置提升类型
    ‘objective’: ‘regression’, # 目标函数
    ‘metric’: {‘l2’, ‘auc’}, # 评估函数
    ‘num_leaves’: 31, # 叶子节点数
    ‘learning_rate’: 0.05, # 学习速率
    ‘feature_fraction’: 0.9, # 建树的特征选择比例
    ‘bagging_fraction’: 0.8, # 建树的样本采样比例
    ‘bagging_freq’: 5, # k 意味着每 k 次迭代执行bagging
    ‘verbose’: 1 # <0 显示致命的, =0 显示错误 (警告), >0 显示信息
    }

    # 7.调用LightGBM模型,使用训练集数据进行训练(拟合)
    # Add verbosity=2 to print messages while running boosting
    my_model = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, early_stopping_rounds=5)

    # 8.使用模型对测试集数据进行预测
    predictions = my_model.predict(test_X, num_iteration=my_model.best_iteration)

    # 9.对模型的预测结果进行评判(平均绝对误差)
    print("Mean Absolute Error : " + str(mean_absolute_error(predictions, test_y)))

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48

    (4)基于Scikit-learn接口的回归

    import pandas as pd
    from sklearn.model_selection import train_test_split
    import lightgbm as lgb
    from sklearn.metrics import mean_absolute_error
    from sklearn.preprocessing import Imputer
    

    # 1.读文件
    data = pd.read_csv(’./dataset/train.csv’)

    # 2.切分数据输入:特征 输出:预测目标变量
    y = data.SalePrice
    X = data.drop([‘SalePrice’], axis=1).select_dtypes(exclude=[‘object’])

    # 3.切分训练集、测试集,切分比例7.5 : 2.5
    train_X, test_X, train_y, test_y = train_test_split(X.values, y.values, test_size=0.25)

    # 4.空值处理,默认方法:使用特征列的平均值进行填充
    my_imputer = Imputer()
    train_X = my_imputer.fit_transform(train_X)
    test_X = my_imputer.transform(test_X)

    # 5.调用LightGBM模型,使用训练集数据进行训练(拟合)
    # Add verbosity=2 to print messages while running boosting
    my_model = lgb.LGBMRegressor(objective=‘regression’, num_leaves=31, learning_rate=0.05, n_estimators=20,
    verbosity=2)
    my_model.fit(train_X, train_y, verbose=False)

    # 6.使用模型对测试集数据进行预测
    predictions = my_model.predict(test_X)

    # 7.对模型的预测结果进行评判(平均绝对误差)
    print("Mean Absolute Error : " + str(mean_absolute_error(predictions, test_y)))

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    5.3 LightGBM调参

    在上一部分中,LightGBM模型的参数有一部分进行了简单的设置,但大都使用了模型的默认参数,但默认参数并不是最好的。要想让LightGBM表现的更好,需要对LightGBM模型进行参数微调。下图展示的是回归模型需要调节的参数,分类模型需要调节的参数与此类似。
    在这里插入图片描述
    图:LightGBM回归模型调参

    6. 关于LightGBM若干问题的思考

    6.1 LightGBM与XGBoost的联系和区别有哪些?

    (1)LightGBM使用了基于histogram的决策树算法,这一点不同于XGBoost中的贪心算法和近似算法,histogram算法在内存和计算代价上都有不小优势。1)内存上优势:很明显,直方图算法的内存消耗为 KaTeX parse error: Expected 'EOF', got '#' at position 2: (#̲data∗#features∗…(#data#features

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值