http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1027
题目意思:
计算两个核苷酸序列的相似性。可以通过插入'-'符号,将两个核苷酸对应,每对核苷酸都有相应的分数。目标是求两个核苷酸序列通过对齐操作得到的最大分数。如AGTGATG和GTTAG,通过对齐AGTGATG和-GTTA-G可以得到最大分数为(-3)+5+5+(-2)+5+(-1) +5=14。
解题思路:
有一个简单的结论可以得到:最多可以插入m+n个'-'。
递归:先从一般思路入手,假设有序列s[0,m]和t[0,n],s和t的最大分数为以下三种情况的最大者:
1. Score(s[0],t[0])+ Score(s[1,m],t[1,n]);
2. Score(s[0],’-’)+ Score(s[1,m],t[0,n]);
3. Score(‘-‘,t[0])+ Score(s[0,m],t[1,n])。
此算法虽然简单,但是时间复杂度为3^(m+n),而且有重复计算,例如计算Score(s[1,m],t[0,n])时,又会计算Score(s[1,m],t[1,n])。于是自然而然想到动态规划方法。
动态规划:
假设有序列 s[0,m]和 t[0,n],则 Score(s[0,i], t[0,j])为以下三种情况的最大者:
1. s[i]与 t[j]配对,为Score(s[i],t[j])+Score(s[0,i-1],t[0,j-1]);
2. s[i]与’-’配对,为Score(s[i],’-’)+Score(s[0,i-1],t[0,j]);
3. t[j]与’-’配对,为Score(t[j],’-’)+Score(s[0,i],t[0,j-1])。
#include <stdio.h>
int matrix[][5] = {{5, -1, -2, -1, -3},
{ -1, 5, -3, -2, -4},
{ -2, -3, 5, -2, -2},
{ -1, -2, -2, 5, -1},
{ -3, -4, -2, -1, 0}
};
int dp[101][101];
int GetIndexFromGene(char x)
{
switch(x)
{
case 'A':
return 0;
case 'C':
return 1;
case 'G':
return 2;
case 'T':
return 3;
case '-':
return 4;
}
}
int GetScore(char x, char y)
{
return matrix[GetIndexFromGene(x)][GetIndexFromGene(y)];
}
int Max(int a, int b, int c)
{
if(a >= b && a >= c)return a;
else if(b >= a && b >= c)return b;
else return c;
}
int main()
{
int t, m, n;
char s0[101], s1[101];
scanf("%d", &t);
while(t--)
{
scanf("%d", &m);
scanf("%s", s0);
scanf("%d", &n);
scanf("%s", s1);
for(int i = 0; i <= m; i++)
for(int j = 0; j <= n; j++)
{
if(i == 0 && j == 0)
dp[i][j] = 0;
else if(i == 0 && j != 0)
dp[i][j] = dp[i][j-1] + GetScore(s1[j-1], ' - ');
else if(i != 0 && j == 0)
dp[i][j] = dp[i-1][j] + GetScore(s0[i-1], ' - ');
else
dp[i][j] = Max(dp[i-1][j-1] + GetScore(s0[i-1], s1[j-1]), dp[i][j-1] + GetScore(' - ', s1[j-1]), dp[i-1][j] + GetScore(s0[i-1], ' - '));
}
printf("%d/n", dp[m][n]);
}
return 0;
}