ZOJ 1027 Human Gene Functions (DP)

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1027

题目意思

计算两个核苷酸序列的相似性。可以通过插入'-'符号,将两个核苷酸对应,每对核苷酸都有相应的分数。目标是求两个核苷酸序列通过对齐操作得到的最大分数。如AGTGATG和GTTAG,通过对齐AGTGATG和-GTTA-G可以得到最大分数为(-3)+5+5+(-2)+5+(-1) +5=14。

解题思路

有一个简单的结论可以得到:最多可以插入m+n个'-'。

递归先从一般思路入手,假设有序列s[0,m]和t[0,n],s和t的最大分数为以下三种情况的最大者

1. Score(s[0],t[0])+ Score(s[1,m],t[1,n]);

2. Score(s[0],’-’)+ Score(s[1,m],t[0,n]);

3. Score(‘-‘,t[0])+ Score(s[0,m],t[1,n])。

此算法虽然简单,但是时间复杂度为3^(m+n),而且有重复计算,例如计算Score(s[1,m],t[0,n])时,又会计算Score(s[1,m],t[1,n])。于是自然而然想到动态规划方法。

动态规划

假设有序列 s[0,m] t[0,n],则 Score(s[0,i], t[0,j])为以下三种情况的最大者:

1. s[i] t[j]配对,为Score(s[i],t[j])+Score(s[0,i-1],t[0,j-1])

2. s[i]’-’配对,为Score(s[i],’-’)+Score(s[0,i-1],t[0,j])

3. t[j]’-’配对,为Score(t[j],’-’)+Score(s[0,i],t[0,j-1])

#include <stdio.h>
int matrix[][5] = {{5, -1, -2, -1, -3},
    { -1, 5, -3, -2, -4},
    { -2, -3, 5, -2, -2},
    { -1, -2, -2, 5, -1},
    { -3, -4, -2, -1, 0}
};
int dp[101][101];
int GetIndexFromGene(char x)
{
    switch(x)
    {
    case 'A':
        return 0;
    case 'C':
        return 1;
    case 'G':
        return 2;
    case 'T':
        return 3;
    case '-':
        return 4;
    }
}
int GetScore(char x, char y)
{
    return matrix[GetIndexFromGene(x)][GetIndexFromGene(y)];
}
int Max(int a, int b, int c)
{
    if(a >= b && a >= c)return a;
    else if(b >= a && b >= c)return b;
    else return c;
}
int main()
{
    int t, m, n;
    char s0[101], s1[101];
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d", &m);
        scanf("%s", s0);
        scanf("%d", &n);
        scanf("%s", s1);
        for(int i = 0; i <= m; i++)
            for(int j = 0; j <= n; j++)
            {
                if(i == 0 && j == 0)
                    dp[i][j] = 0;
                else if(i == 0 && j != 0)
                    dp[i][j] = dp[i][j-1] + GetScore(s1[j-1], ' - ');
                else if(i != 0 && j == 0)
                    dp[i][j] = dp[i-1][j] + GetScore(s0[i-1], ' - ');
                else
                    dp[i][j] = Max(dp[i-1][j-1] + GetScore(s0[i-1], s1[j-1]), dp[i][j-1] + GetScore(' - ', s1[j-1]), dp[i-1][j] + GetScore(s0[i-1], ' - '));
            }
        printf("%d/n", dp[m][n]);
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值