Permutation Sequence
The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
假设有n个元素,第K个permutation是a1, a2, a3, ..... ..., an,那么a1是哪一个数字呢?
那么这里,我们把a1去掉,那么剩下的permutation为:a2, a3, .... .... an, 共计n-1个元素。 n-1个元素共有(n-1)!组排列,那么这里就可以知道
设变量K1 = K-1
a1 = K1 / (n-1)!// 即a1是1~n中未使用过的第a1个元素,例如,刚开始时,若a1 = 1,则结果的第一个元素是2
同理,a2的值可以推导为
K2 = K1 % (n-1)! //前面的a1*(n-1)!已经加入,所以要去掉
a2 = K2 / (n-2)!
。。。。。
K(n-1) = K(n-2) /2!
a(n-1) = K(n-1) / 1!
an = K(n-1)
class Solution {
public:
string getPermutation(int n, int k)
{
int data[10];//保存阶层的值
bool hashUse[10];
memset(hashUse,false,sizeof(bool)*10);
int i,j;
data[0] = data[1] = 1;
for(i = 2;i <= n;++i)data[i] = data[i-1] * i;
k --;
string res;
for(i = n - 1;i >= 0;--i)
{
int value = k / data[i];
for(j = 1;j <= n;++j)//查找第value大且未使用过的值
{
if(!hashUse[j])value--;
if(value < 0)break;
}
hashUse[j] = true;
res += j + '0';
k %= data[i];
}
return res;
}
};