开发机器学习应用程序的步骤

1.收集数据

  • 可以通过很多种方法收集样本数据:
    • 制作网络爬虫从网站上爬取数据
    • RSS反馈或者API中得到信息
    • 设备,传感器获取的实测数据(温度,血压)
      在这里插入图片描述

准备输入数据

  • 得到数据后,需要对数据进行处理,确保数据格式符合要求
  • 需要为机器学习算法准备特定的数据格式

分析输入数据

  • 为了确保前两步有效:
    • 用文本编辑器打开数据文件,查看得到的数据是否为空值,分析是否可以识别出模式;数据中是否存在明显的异常值
    • 通过一维、二维或三维图展示数据,但一次图形化无法展示所有特征
  • 如果我们认为数据没有问题,可直接跳过这一步

训练算法

  • 将前面得到的数据输入算法,从中抽取知识或信息;这里得到的信息需要储存为计算机可处理的格式,方便后续使用
    在这里插入图片描述
  • 若使用非监督学习算法,由于不存在目标变量值,故不需要训练算法

测试算法

  • 使用上一步得到信息;为了评估算法,必须测试算法工作的效果。对于有监督学习,需用已知的目标变量值评估算法;对于非监督学习,必须用其他评估手段来检验算法的成功率
  • 若不满意算法的输出结果,则可回到训练算法阶段,改正并加以测试

使用算法

  • 将机器学习算法转化为应用程序,执行实际任务
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值