最短路
dijkstra算法(main函数别忘了初始化)
void dis()
{
int i, j, min , v;
int dist[N];
bool visit[N];
for(i=1; i<=n; i++)
{
visit[i]=0;
dist[i]=map[1][i];//从1为起点开始初始化1到各点的距离
}
for(i=1; i<=n; i++)
{
min = inf;
for(j=1; j<=n; j++)
{
if(!visit[j]&&min>dist[j])//找到未被访问的最近的点
{
min=dist[j];
v=j;
}
}
visit[v]=1;
for(j=1; j<=n; j++)
{
if(!visit[j]&&dist[j]>dist[v] + map[v][j])//松弛
dist[j] = dist[v] + map[v][j];
}
}
printf("%d\n", dist[n]);
}
Floyd算法(时间复杂度为O(n^3))
void Floyd()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
map[i][j]=min(map[i][j],map[i][k]+map[k][j]);//可以求出任意两点的最短路;
}
}
}
}
Bellmanford 算法
适用条件&范围:
单源最短路径(从源点s到其它所有顶点v);
有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);
边权可正可负(如有负权回路输出错误提示);
差分约束系统;
Bellman-Ford算法的流程如下:
给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;
以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;
为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。
可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).
Bellman-Ford算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:
d(v) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
bool Bellmanford(int n, int k)
{
int i, j;
bool flag;
for(i=1; i<n; i++)
{
flag =false;
for(j=0; j<k; j++)
{
if(dist[G[j].v]>dist[G[j].u]+G[j].w)
{
dist[G[j].v] = dist[G[j].u]+G[j].w;
}
}
}
for(i=0; i<k; i++)
{
if(dist[G[i].v]>dist[G[i].u]+G[i].w)
return true;
}
return false;
}
739

被折叠的 条评论
为什么被折叠?



